Global stability in a competitive infection-age structured model
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 54.

Voir la notice de l'article provenant de la source EDP Sciences

We study a competitive infection-age structured SI model between two diseases. The well-posedness of the system is handled by using integrated semigroups theory, while the existence and the stability of disease-free or endemic equilibria are ensured, depending on the basic reproduction number and of each strain. We then exhibit Lyapunov functionals to analyse the global stability and we prove that the disease-free equilibrium is globally asymptotically stable whenever . With respect to explicit basin of attraction, the competitive exclusion principle occurs in the case where and , meaning that the strain with the largest R0 persists and eliminates the other strain. In the limit case , an infinite number of endemic equilibria exists and constitute a globally attractive set.
DOI : 10.1051/mmnp/2020007

Quentin Richard 1

1 Université de Bordeaux, IMB, UMR CNRS 5251, 33400 Talence, France.
@article{MMNP_2020_15_a64,
     author = {Quentin Richard},
     title = {Global stability in a competitive infection-age structured model},
     journal = {Mathematical modelling of natural phenomena},
     eid = {54},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2020007},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020007/}
}
TY  - JOUR
AU  - Quentin Richard
TI  - Global stability in a competitive infection-age structured model
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020007/
DO  - 10.1051/mmnp/2020007
LA  - en
ID  - MMNP_2020_15_a64
ER  - 
%0 Journal Article
%A Quentin Richard
%T Global stability in a competitive infection-age structured model
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020007/
%R 10.1051/mmnp/2020007
%G en
%F MMNP_2020_15_a64
Quentin Richard. Global stability in a competitive infection-age structured model. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 54. doi : 10.1051/mmnp/2020007. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020007/

[1] F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Vol. 40, Texts in Applied Mathematics. Springer, New York (2012), 40.

[2] L.-M. Cai, M. Martcheva, X.-Z. Li Competitive exclusion in a vector-host epidemic model with distributed delay J. Biol. Dyn 2013 47 67

[3] A. Calsina, J.-Z. Farkas Steady states in a structured epidemic model with Wentzell boundary condition J. Evol. Equ 2012 495 512

[4] A. Calsina, J.-Z. Farkas On a strain-structured epidemic model Nonlinear Anal. Real World Appl 2016 325 342

[5] T. Cazenave and A. Haraux, Introduction aux Problèmes d’Évolution Semi-linéaires, Vol. 1, Mathématiques Applications (Paris) [Mathematics and Applications]. Ellipses, Paris (1990).

[6] C.-Y. Cheng, Y. Dong, Y. Takeuchi An age-structured virus model with two routes of infection in heterogeneous environments Nonlinear Anal. Real World Appl 2018 464 491

[7] P. Clément, H. Heijmans, S. Angenent, C.J. van Duijn and B. de Pagter, One-Parameter Semigroups, Vol. 5. North-Holland Publishing Co.(Amsterdam) (1987).

[8] L. Dai, X. Zou Analysis of a within-host age-structured model with mutations between two viral strains J. Math. Anal. Appl 2015 953 970

[9] Y.-X. Dang, X.-Z. Li, M. Martcheva Competitive exclusion in a multi-strain immuno-epidemiological influenza model with environmental transmission J. Biol. Dyn 2016 416 456

[10] O. Diekmann, J.A. Heesterbeek, J.A. Metz On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations J. Math. Biol 1990 365 382

[11] O. Diekmann and J.A. Heesterbeek, Mathematical Epidemiology of Infectious Diseases, Wiley Series in Mathematical and Computational Biology, John Wiley Sons, Ltd., Chichester (2000).

[12] R. Djidjou-Demasse, A. Ducrot An age-structured within-host model for multistrain malaria infections SIAM J. Appl. Math 2013 572 593

[13] L. Dublin, A. Lotka On the true rate of natural increase J. Am. Stat. Assoc 1925 305 339

[14] A. Ducrot, S. Madec Singularly perturbed elliptic system modeling the competitive interactions for a single resource Math. Models Methods Appl. Sci 2013 1939 1977

[15] A. Ducrot, Z. Liu, P. Magal Essential growth rate for bounded linear perturbation of non-densely defined Cauchy problems J. Math. Anal. Appl 2008 501 518

[16] K.J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Vol. 63. Springer-Verlag, Berlin (2000).

[17] P. Gabriel Long-time asymptotics for nonlinear growth-fragmentation equations Commun. Math. Sci 2012 787 820

[18] G.F. Gause, The Struggle for Existence. Williams and Wilkins, Baltimore (1934).

[19] B.S. Goh Global stability in many-species Systems The American Naturalist 1977 135 143

[20] J.K Hale, Asymptotic Behavior of Dissipative Systems, Vol. 25, Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1988).

[21] J.K Hale, P. Waltman Persistence in infinite-dimensional systems SIAM J. Math. Anal 1989 388 395

[22] J.A.P. Heesterbeek A brief history of R0 and a recipe for its calculation Acta Biotheor 2002 189 204

[23] S.B. Hsu On global stability of a predator-prey system TMath. Biosci 1978 1 10

[24] S.B. Hsu A survey of constructing Lyapunov functions for mathematical models in population biology Taiwanese J. Math 2005 151 173

[25] M. Iannelli and F. Milner, The Basic Approach to Age-Structured Population Dynamics, Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, Dordrecht (2017).

[26] H. Inaba, Age-Structured Population Dynamics in Demography and Epidemiology. Springer, Singapore (2017).

[27] W.O. Kermack, A.G. Mckendrick A contribution to the mathematical theory of epidemics Proc. R. Soc. London A Math., Phys. Eng. Sci 1927 700 721

[28] B. Laroche, A. Perasso Threshold behaviour of a SI epidemiological model with two structuring variables J. Evol. Equ 2016 293 315

[29] P. Magal Compact attractors for time-periodic age-structured population models Electron. J. Differ. Equ 2001 1 35

[30] P. Magal, C.C. Mccluskey, G.F. Webb Lyapunov functional and global asymptotic stability for an infection-age model Appl. Anal 2010 1109 1140

[31] P. Magal, C.C. Mccluskey Two-group infection age model including an application to nosocomial infection SIAM J. Appl. Math 2013 1058 1095

[32] P. Magal and S. Ruan, Theory and Applications of Abstract Semilinear Cauchy Problems, in vol. 201 of Applied Mathematical Sciences. Springer, Cham (2018).

[33] P. Magal, X.-Q. Zhao Global attractors and steady states for uniformly persistent dynamical systems SIAM J. Math. Anal 2005 251 275

[34] M. Martcheva, X.-Z. Li Competitive exclusion in an infection-age structured model with environmental transmission J. Math. Anal. Appl 2013 225 246

[35] C.C. Mccluskey Global stability for an SEIR epidemiological model with varying infectivity and infinite delay Math. Biosci. Eng 2009 603 610

[36] C.C. Mccluskey Complete global stability for an SIR epidemic model with delay—distributed or discrete Nonlinear Anal. Real World Appl 2010 55 59

[37] K. Mischaikow, H. Smith, H.R Thieme Asymptotically autonomous semiflows: chain recurrence and Lyapunov functions Trans. Amer. Math. Soc 1995 1669 1685

[38] A. Perasso An introduction to the basic reproduction number in mathematical epidemiology ESAIM: PS 2018 123 138

[39] A. Perasso Global Stability and uniform persistence for an infection load-structured SI model with exponential growth velocity Commun. Pure Appl. Anal 2019 15 32

[40] A. Perasso, U. Razafison Asymptotic behavior and numerical simulations for an infection load-structured epidemiological model: application to the transmission of prion pathologies SIAM J. Appl. Math 2014 1571 1597

[41] A. Perasso and Q. Richard, Asymptotic behavior of age-structured and delayed Lotka-Volterra models. Preprint arXiv:1905.02770 (2020).

[42] H.L. Smith, Monotone Dynamical Systems, Vol. 41, Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1995).

[43] H.L. Smith, H.R. Thieme Chemostats and epidemics: competition for nutrients/hosts Math. Biosci. Eng 2013 1635 1650

[44] H.R. Thieme Semiflows generated by Lipschitz perturbations of non-densely defined operators Differ. Integral Equ 1990 1035 1066

[45] H.R Thieme and C. Castillo-Chavez, On the role of variable infectivity in the dynamics of the human immunodeficiency virus epidemic,Mathematical and Statistical Approaches to AIDS Epidemiology. In Vol. 83 of Lecture Notes in Biomath. Springer, Berlin (1989) 157–176.

[46] H.R Thieme, C. Castillo-Chavez How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS? SIAM J. Appl. Math. 1993 1447 1479

[47] J.A. Walker, Dynamical Systems and Evolution Equations, Vol. 20, Mathematical Concepts and Methods in Science and Engineering. Plenum Press, New York-London (1980).

[48] G.F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, New York (1985).

[49] G.F. Webb An operator-theoretic formulation of asynchronous exponential growth Trans. Am. Math. Soc 1987 751 763

Cité par Sources :