Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2020_15_a64, author = {Quentin Richard}, title = {Global stability in a competitive infection-age structured model}, journal = {Mathematical modelling of natural phenomena}, eid = {54}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2020007}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020007/} }
TY - JOUR AU - Quentin Richard TI - Global stability in a competitive infection-age structured model JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020007/ DO - 10.1051/mmnp/2020007 LA - en ID - MMNP_2020_15_a64 ER -
Quentin Richard. Global stability in a competitive infection-age structured model. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 54. doi : 10.1051/mmnp/2020007. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020007/
[1] F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Vol. 40, Texts in Applied Mathematics. Springer, New York (2012), 40.
[2] Competitive exclusion in a vector-host epidemic model with distributed delay J. Biol. Dyn 2013 47 67
, ,[3] Steady states in a structured epidemic model with Wentzell boundary condition J. Evol. Equ 2012 495 512
,[4] On a strain-structured epidemic model Nonlinear Anal. Real World Appl 2016 325 342
,[5] T. Cazenave and A. Haraux, Introduction aux Problèmes d’Évolution Semi-linéaires, Vol. 1, Mathématiques Applications (Paris) [Mathematics and Applications]. Ellipses, Paris (1990).
[6] An age-structured virus model with two routes of infection in heterogeneous environments Nonlinear Anal. Real World Appl 2018 464 491
, ,[7] P. Clément, H. Heijmans, S. Angenent, C.J. van Duijn and B. de Pagter, One-Parameter Semigroups, Vol. 5. North-Holland Publishing Co.(Amsterdam) (1987).
[8] Analysis of a within-host age-structured model with mutations between two viral strains J. Math. Anal. Appl 2015 953 970
,[9] Competitive exclusion in a multi-strain immuno-epidemiological influenza model with environmental transmission J. Biol. Dyn 2016 416 456
, ,[10] On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations J. Math. Biol 1990 365 382
, ,[11] O. Diekmann and J.A. Heesterbeek, Mathematical Epidemiology of Infectious Diseases, Wiley Series in Mathematical and Computational Biology, John Wiley Sons, Ltd., Chichester (2000).
[12] An age-structured within-host model for multistrain malaria infections SIAM J. Appl. Math 2013 572 593
,[13] On the true rate of natural increase J. Am. Stat. Assoc 1925 305 339
,[14] Singularly perturbed elliptic system modeling the competitive interactions for a single resource Math. Models Methods Appl. Sci 2013 1939 1977
,[15] Essential growth rate for bounded linear perturbation of non-densely defined Cauchy problems J. Math. Anal. Appl 2008 501 518
, ,[16] K.J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Vol. 63. Springer-Verlag, Berlin (2000).
[17] Long-time asymptotics for nonlinear growth-fragmentation equations Commun. Math. Sci 2012 787 820
[18] G.F. Gause, The Struggle for Existence. Williams and Wilkins, Baltimore (1934).
[19] Global stability in many-species Systems The American Naturalist 1977 135 143
[20] J.K Hale, Asymptotic Behavior of Dissipative Systems, Vol. 25, Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1988).
[21] Persistence in infinite-dimensional systems SIAM J. Math. Anal 1989 388 395
,[22] A brief history of R0 and a recipe for its calculation Acta Biotheor 2002 189 204
[23] On global stability of a predator-prey system TMath. Biosci 1978 1 10
[24] A survey of constructing Lyapunov functions for mathematical models in population biology Taiwanese J. Math 2005 151 173
[25] M. Iannelli and F. Milner, The Basic Approach to Age-Structured Population Dynamics, Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, Dordrecht (2017).
[26] H. Inaba, Age-Structured Population Dynamics in Demography and Epidemiology. Springer, Singapore (2017).
[27] A contribution to the mathematical theory of epidemics Proc. R. Soc. London A Math., Phys. Eng. Sci 1927 700 721
,[28] Threshold behaviour of a SI epidemiological model with two structuring variables J. Evol. Equ 2016 293 315
,[29] Compact attractors for time-periodic age-structured population models Electron. J. Differ. Equ 2001 1 35
[30] Lyapunov functional and global asymptotic stability for an infection-age model Appl. Anal 2010 1109 1140
, ,[31] Two-group infection age model including an application to nosocomial infection SIAM J. Appl. Math 2013 1058 1095
,[32] P. Magal and S. Ruan, Theory and Applications of Abstract Semilinear Cauchy Problems, in vol. 201 of Applied Mathematical Sciences. Springer, Cham (2018).
[33] Global attractors and steady states for uniformly persistent dynamical systems SIAM J. Math. Anal 2005 251 275
,[34] Competitive exclusion in an infection-age structured model with environmental transmission J. Math. Anal. Appl 2013 225 246
,[35] Global stability for an SEIR epidemiological model with varying infectivity and infinite delay Math. Biosci. Eng 2009 603 610
[36] Complete global stability for an SIR epidemic model with delay—distributed or discrete Nonlinear Anal. Real World Appl 2010 55 59
[37] Asymptotically autonomous semiflows: chain recurrence and Lyapunov functions Trans. Amer. Math. Soc 1995 1669 1685
, ,[38] An introduction to the basic reproduction number in mathematical epidemiology ESAIM: PS 2018 123 138
[39] Global Stability and uniform persistence for an infection load-structured SI model with exponential growth velocity Commun. Pure Appl. Anal 2019 15 32
[40] Asymptotic behavior and numerical simulations for an infection load-structured epidemiological model: application to the transmission of prion pathologies SIAM J. Appl. Math 2014 1571 1597
,[41] A. Perasso and Q. Richard, Asymptotic behavior of age-structured and delayed Lotka-Volterra models. Preprint arXiv:1905.02770 (2020).
[42] H.L. Smith, Monotone Dynamical Systems, Vol. 41, Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1995).
[43] Chemostats and epidemics: competition for nutrients/hosts Math. Biosci. Eng 2013 1635 1650
,[44] Semiflows generated by Lipschitz perturbations of non-densely defined operators Differ. Integral Equ 1990 1035 1066
[45] H.R Thieme and C. Castillo-Chavez, On the role of variable infectivity in the dynamics of the human immunodeficiency virus epidemic,Mathematical and Statistical Approaches to AIDS Epidemiology. In Vol. 83 of Lecture Notes in Biomath. Springer, Berlin (1989) 157–176.
[46] How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS? SIAM J. Appl. Math. 1993 1447 1479
,[47] J.A. Walker, Dynamical Systems and Evolution Equations, Vol. 20, Mathematical Concepts and Methods in Science and Engineering. Plenum Press, New York-London (1980).
[48] G.F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, New York (1985).
[49] An operator-theoretic formulation of asynchronous exponential growth Trans. Am. Math. Soc 1987 751 763
Cité par Sources :