Voir la notice de l'article provenant de la source EDP Sciences
Primitivo B. Acosta-Humánez 1, 2 ; José A. Capitán 3 ; Juan J. Morales-Ruiz 4
@article{MMNP_2020_15_a76, author = {Primitivo B. Acosta-Hum\'anez and Jos\'e A. Capit\'an and Juan J. Morales-Ruiz}, title = {Integrability of stochastic birth-death processes via differential {Galois} theory}, journal = {Mathematical modelling of natural phenomena}, eid = {70}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2020005}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020005/} }
TY - JOUR AU - Primitivo B. Acosta-Humánez AU - José A. Capitán AU - Juan J. Morales-Ruiz TI - Integrability of stochastic birth-death processes via differential Galois theory JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020005/ DO - 10.1051/mmnp/2020005 LA - en ID - MMNP_2020_15_a76 ER -
%0 Journal Article %A Primitivo B. Acosta-Humánez %A José A. Capitán %A Juan J. Morales-Ruiz %T Integrability of stochastic birth-death processes via differential Galois theory %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020005/ %R 10.1051/mmnp/2020005 %G en %F MMNP_2020_15_a76
Primitivo B. Acosta-Humánez; José A. Capitán; Juan J. Morales-Ruiz. Integrability of stochastic birth-death processes via differential Galois theory. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 70. doi : 10.1051/mmnp/2020005. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020005/
[1] M. Abramowitz and I.A. Stegun, Handbook of mathematical functions: with formulas, graphs and mathematical tables. Dover Publications, New York (1965).
[2] Non-integrability of some hamiltonians with rational potentials Discr. Continu. Dyn. Syst. B 2008 265 293
,[3] Differential Galois theory and non-integrability of planar polynomial vector fields J. Differ. Equ 2018 7183 7212
, , ,[4] Galoisian approach to integrability of Schrödinger equation Rep. Math. Phys 2011 305 374
, ,[5] The merits of neutral theory Trends Ecol. Evol 2006 451 457
, ,[6] Stochastic amplification in epidemics J. R. Soc. Interface 2007 575 582
, ,[7] How similar can co-occurring species be in the presence of competition and ecological drift? J. R. Soc. Interface 2015 20150604
, ,[8] Stochastic competitive exclusion leads to a cascade of species extinctions J. Theor. Biol 2017 137 151
, ,[9] T. Crespo and Z. Hajto, Algebraic Groups and Differential Galois Theory. In Vol. 122 of Graduate Studies in Mathematics. American Mathematical Society, Providence, Rhode Island (2011).
[10] Die grundlagen der volterrschen theorie des kampfes ums dasein in wahrscheinlichkeitstheoretischer behandlung Acta Biometrica 1939 11 40
[11] A mathematical synthesis of niche and neutral theories in community ecology J. Theor. Biol 2011 150 165
,[12] S.P. Hubbell, The Unified Theory of Biodiversity and Biogeography. Princeton University Press, Princeton (2001).
[13] I. Kaplansky, An introduction to differential algebra. Hermann, Paris (1957).
[14] S. Karlin and H.M. Taylor, A first course in stochastic processes. Academic Press, New York (1975).
[15] On the generalized birth-and-death process Ann. Math. Stat 1948 1 15
[16] Academic Press New York 1973
, ,[17] An algorithm for solving second order linear homogeneous differential equations J. Symbolic Comput 1986 3 43
[18] The rate of multiplication of micro-organisms: A mathematical study Proc. R. Soc. Edinburgh 1912 649 653
,[19] J.J. Morales-Ruiz, Differential Galois Theory and Non-integrability of Hamiltonian Systems. In Vol. 179 of Progress in Mathematics series. Birkhäusser, Basel (1999).
[20] R.M. Nisbet and W.C.S. Gurney, Modelling fluctuating populations. The Blackburn Press, Caldwell, New Jersey (1982).
[21] Biological applications of the theory of birth-and-death processes Brief. Bioinform 2006 70 85
, ,[22] A. Ronveaux, Heun’s differential equations. Oxford University Press, Oxford (1995).
[23] A mathematical theory of evolution, based on the conclusions of Dr. J.C. Willis Philos. Trans. R. Soc. Lond. B Biol. Sci. 1924 21 87
[24] M. van der Put and M. Singer, Galois theory of linear differential equations. In Vol. 328 of Grundlehren der mathematischen Wissenschaften. Springer Verlag, New York (2003).
[25] T.L. Saati, Elements of queuing theory. McGraw-Hill, New York (1961).
[26] Variazioni e fluttuazioni del numero d’individui in specie animali conviventi Mem. Acad. Naz. Lincei 1926 31 113
Cité par Sources :