Integrability of stochastic birth-death processes via differential Galois theory
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 70.

Voir la notice de l'article provenant de la source EDP Sciences

Stochastic birth-death processes are described as continuous-time Markov processes in models of population dynamics. A system of infinite, coupled ordinary differential equations (the so-called master equation) describes the time-dependence of the probability of each system state. Using a generating function, the master equation can be transformed into a partial differential equation. In this contribution we analyze the integrability of two types of stochastic birth-death processes (with polynomial birth and death rates) using standard differential Galois theory. We discuss the integrability of the PDE via a Laplace transform acting over the temporal variable. We show that the PDE is not integrable except for the case in which rates are linear functions of the number of individuals.
DOI : 10.1051/mmnp/2020005

Primitivo B. Acosta-Humánez 1, 2 ; José A. Capitán 3 ; Juan J. Morales-Ruiz 4

1 School of Basic and Biomedical Sciences, Universidad Simón Bolívar, Barranquilla, Colombia.
2 Instituto Superior de Formación Docente Salomé Ureña, Dominican Republic.
3 Depto. de Matemática Aplicada & Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, Madrid, Spain.
4 Depto. de Matemática Aplicada & Grupo Modelos Matemáticos no Lineales, Universidad Politécnica de Madrid, Madrid, Spain.
@article{MMNP_2020_15_a76,
     author = {Primitivo B. Acosta-Hum\'anez and Jos\'e A. Capit\'an and Juan J. Morales-Ruiz},
     title = {Integrability of stochastic birth-death processes via differential {Galois} theory},
     journal = {Mathematical modelling of natural phenomena},
     eid = {70},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2020005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020005/}
}
TY  - JOUR
AU  - Primitivo B. Acosta-Humánez
AU  - José A. Capitán
AU  - Juan J. Morales-Ruiz
TI  - Integrability of stochastic birth-death processes via differential Galois theory
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020005/
DO  - 10.1051/mmnp/2020005
LA  - en
ID  - MMNP_2020_15_a76
ER  - 
%0 Journal Article
%A Primitivo B. Acosta-Humánez
%A José A. Capitán
%A Juan J. Morales-Ruiz
%T Integrability of stochastic birth-death processes via differential Galois theory
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020005/
%R 10.1051/mmnp/2020005
%G en
%F MMNP_2020_15_a76
Primitivo B. Acosta-Humánez; José A. Capitán; Juan J. Morales-Ruiz. Integrability of stochastic birth-death processes via differential Galois theory. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 70. doi : 10.1051/mmnp/2020005. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020005/

[1] M. Abramowitz and I.A. Stegun, Handbook of mathematical functions: with formulas, graphs and mathematical tables. Dover Publications, New York (1965).

[2] P. Acosta-Humánez, D. Blázquez-Sanz Non-integrability of some hamiltonians with rational potentials Discr. Continu. Dyn. Syst. B 2008 265 293

[3] P. Acosta-Humánez, J.T. Lázaro, J.J. Morales-Ruiz, C. Pantazi Differential Galois theory and non-integrability of planar polynomial vector fields J. Differ. Equ 2018 7183 7212

[4] P. Acosta-Humánez, J.J. Morales-Ruiz, J.-A. Weil Galoisian approach to integrability of Schrödinger equation Rep. Math. Phys 2011 305 374

[5] D. Alonso, R.S. Etienne, A.J. Mckane The merits of neutral theory Trends Ecol. Evol 2006 451 457

[6] D. Alonso, A.J. Mckane, M. Pascual Stochastic amplification in epidemics J. R. Soc. Interface 2007 575 582

[7] J.A. Capitán, S. Cuenda, D. Alonso How similar can co-occurring species be in the presence of competition and ecological drift? J. R. Soc. Interface 2015 20150604

[8] J.A. Capitán, S. Cuenda, D. Alonso Stochastic competitive exclusion leads to a cascade of species extinctions J. Theor. Biol 2017 137 151

[9] T. Crespo and Z. Hajto, Algebraic Groups and Differential Galois Theory. In Vol. 122 of Graduate Studies in Mathematics. American Mathematical Society, Providence, Rhode Island (2011).

[10] W. Feller Die grundlagen der volterrschen theorie des kampfes ums dasein in wahrscheinlichkeitstheoretischer behandlung Acta Biometrica 1939 11 40

[11] B. Haegeman, M. Loreau A mathematical synthesis of niche and neutral theories in community ecology J. Theor. Biol 2011 150 165

[12] S.P. Hubbell, The Unified Theory of Biodiversity and Biogeography. Princeton University Press, Princeton (2001).

[13] I. Kaplansky, An introduction to differential algebra. Hermann, Paris (1957).

[14] S. Karlin and H.M. Taylor, A first course in stochastic processes. Academic Press, New York (1975).

[15] D.G. Kendall On the generalized birth-and-death process Ann. Math. Stat 1948 1 15

[16] E. Kolchin, Differential Algebra, Algebraic Groups. Academic Press New York 1973

[17] J.J. Kovacic An algorithm for solving second order linear homogeneous differential equations J. Symbolic Comput 1986 3 43

[18] A.G. Mckendrick, M. Kesava The rate of multiplication of micro-organisms: A mathematical study Proc. R. Soc. Edinburgh 1912 649 653

[19] J.J. Morales-Ruiz, Differential Galois Theory and Non-integrability of Hamiltonian Systems. In Vol. 179 of Progress in Mathematics series. Birkhäusser, Basel (1999).

[20] R.M. Nisbet and W.C.S. Gurney, Modelling fluctuating populations. The Blackburn Press, Caldwell, New Jersey (1982).

[21] A.S. Novozhilov, G.P. Karev, E.V. Koonin Biological applications of the theory of birth-and-death processes Brief. Bioinform 2006 70 85

[22] A. Ronveaux, Heun’s differential equations. Oxford University Press, Oxford (1995).

[23] G.U. Yule A mathematical theory of evolution, based on the conclusions of Dr. J.C. Willis Philos. Trans. R. Soc. Lond. B Biol. Sci. 1924 21 87

[24] M. van der Put and M. Singer, Galois theory of linear differential equations. In Vol. 328 of Grundlehren der mathematischen Wissenschaften. Springer Verlag, New York (2003).

[25] T.L. Saati, Elements of queuing theory. McGraw-Hill, New York (1961).

[26] V. Volterra Variazioni e fluttuazioni del numero d’individui in specie animali conviventi Mem. Acad. Naz. Lincei 1926 31 113

Cité par Sources :