Voir la notice de l'article provenant de la source EDP Sciences
Emilie Denicolai 1 ; Stéphane Honoré 2, 3 ; Florence Hubert 4 ; Rémi Tesson 4, 5
@article{MMNP_2020_15_a42, author = {Emilie Denicolai and St\'ephane Honor\'e and Florence Hubert and R\'emi Tesson}, title = {Microtubules {(MT)} a key target in oncology: mathematical modeling of {anti-MT} agents on cell migration}, journal = {Mathematical modelling of natural phenomena}, eid = {63}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2020004}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020004/} }
TY - JOUR AU - Emilie Denicolai AU - Stéphane Honoré AU - Florence Hubert AU - Rémi Tesson TI - Microtubules (MT) a key target in oncology: mathematical modeling of anti-MT agents on cell migration JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020004/ DO - 10.1051/mmnp/2020004 LA - en ID - MMNP_2020_15_a42 ER -
%0 Journal Article %A Emilie Denicolai %A Stéphane Honoré %A Florence Hubert %A Rémi Tesson %T Microtubules (MT) a key target in oncology: mathematical modeling of anti-MT agents on cell migration %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020004/ %R 10.1051/mmnp/2020004 %G en %F MMNP_2020_15_a42
Emilie Denicolai; Stéphane Honoré; Florence Hubert; Rémi Tesson. Microtubules (MT) a key target in oncology: mathematical modeling of anti-MT agents on cell migration. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 63. doi : 10.1051/mmnp/2020004. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020004/
[1] The Croonian lecture, 1978: The crawling movement of metazoan cells Proc. Roy. Soc. Lond. B 1980 129 147
[2] On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation J. Comput. Phys 1994 45 58
[3] Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes Numer. Methods Partial Differ. Equ 2007 145 195
, ,[4] Cell motility: Insights from the backstage Nat. Cell Biol 2003 E292 E294
,[5] In silico modeling microtubule dynamic instability with new mathematical concept of GTP-hydrolysis and aging ESAIM: M2AN 2017
, , , ,[6] The novel tubulin-binding checkpoint activator BAL101553 inhibits EB1-dependent migration and invasion and promotes differentiation of glioblastoma stem-like cells Mol. Cancer Ther 2016 2740 2749
, , , , , , ,[7] Escherichia coli cytotoxic necrotizing factor 1 inhibits intestinal epithelial wound healing in vitro after mechanical injury Infect Immun. 2004 5733 5740
, , , , , , , , ,[8] Cdc42 controls the polarity of the actin and microtubule cytoskeletons through two distinct signal transduction pathways J. Cell Sci 2005 2579 2587
,[9] Study of discrete duality finite volume schemes for the Peaceman model SIAM J. Sci. Comput 2013 A2928 A2952
, ,[10] A high-order finite volume method for hyperbolic systems: multi-dimensional Optimal Order Detection (MOOD). J. Comput. Phys. 2011 4028 4050
, ,[11] the great escape: When cancer cells hijack the genes for chemotaxis and motility Annu. Rev. Cell Dev. Biol 2005 695 718
, ,[12] G.-H. Cottet, Multi-physics and particle methods, Computational Fluid and Solid Mechanics 2003, edited by K.J. Bathe. Elsevier Science Ltd, Oxford (2003) 1296–1298.
[13] A level set method for fluid-structure interactions with immersed surfaces Math. Models Methods Appl. Sci 2006 415 438
,[14] Eulerian formulation and level set models for incompressible fluid-structure interaction ESAIM: M2AN 2008 471 492
, ,[15] mDia and ROCK mediate actin-dependent presynaptic remodeling regulating synaptic efficacy and anxiety Cell Reports 2016 2405 2417
, , , , , , , , , ,[16] Mathematical modeling of the effect of microtubule dynamicsinstability on glioblastoma cells migration 2019
, , , ,[17] A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids ESAIM: M2AN 2005 1203 1249
,[18] C. Etchegaray, B. Grec, B. Maury, N. Meunier and L. Navoret, An integro-differential equation for 1D cell migration, Integral Methods in Science and Engineering (IMSE) (Karlsruhe, Germany), Integral Methods in Science and Engineering – Theoretical and Computational Advances. Springer (2014) 195–207.
[19] Microtubules in cell migration Annu. Rev. Cell Dev. Biol 2013 471 499
[20] J.-P. ten Klooster, R.A. van der Kammen and J.G Collard, Rho family proteins in cell adhesion and cell migration Eur. J. Cancer 2000 1269 1274
, , ,[21] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, Solution of Equation in ℝn (Part 3), Techniques of Scientific Computing (Part 3), Handbook of Numerical Analysis, vol. 7. Elsevier (2000) 713–1018.
[22] Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids J. Comput. Phys 1998 194 212
[23] Free boundary problem for cell protrusion formations: theoretical and numerical aspects J. Math. Biol 2017 263 307
, , ,[24] A review of level-set methods and some recent applications J. Comput. Phys 2018 82 109
, ,[25] Uniformly high-order accurate nonoscillatory schemes. I SIAM J. Numer. Anal 1987 279 309
,[26] Some results on uniformly high-order accurate essentially nonoscillatory schemes Appl. Numer. Math 1986 347 377
, , ,[27] Uniformly high order accurate essentially non-oscillatory schemes, III J. Computat. Phys 1997 3 47
, , ,[28] A finite volume method for the approximation of diffusion operators on distorted meshes J. Comput. Phys 2000 481 499
[29] Weighted essentially non-oscillatory schemes on triangular meshes J. Comput. Phys 1999 97 127
,[30] A growth-fragmentation approach for modeling microtubule dynamic instability Bull. Math. Biol 2019 722 758
, , ,[31] Efficient implementation of weighted ENO schemes J. Comput. Phys 1996 202 228
,[32] Regulation of cell migration by dynamic microtubules Semin. Cell. Dev. Biol 2011
,[33] Stabilized DDFV schemes for stokes problem with variable viscosity on general 2d meshes Numer. Methods Part. Differ. Equ 2011 1666 1706
[34] Rho GTPase signaling complexes in cell migration and invasion J. Cell Biol 2018 447 457
,[35] Stoichiometry of GTP hydrolysis and tubulin polymerization Proc. Natl. Acad. Sci. Biochem 1977
,[36] M.S. Mizuhara, L. Berlyand and I.S. Aronson, Minimal Model of Directed Cell Motility on Patterned Substrates. Preprint arXiv:1705.05990 (2017).
[37] Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion Cancer Metast. Rev 2009 65 76
, ,[38] Regulation of end-binding protein EB1 in the control of microtubule dynamics Cell. Mol. Life Sci 2017 2381 2393
, , , ,[39] Level set methods: An overview and some recent results J. Comput. Phys 2001 463 502
,[40] Multi-dimensional limiting process for hyperbolic conservation laws on unstructured grids J. Comput. Phys 2010 788 812
, ,[41] Cellular motility driven by assembly and disassembly of actin filaments Cell 2003 453 465
,[42] Rac downregulates rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior J. Cell. Biol 1999 1009 1022
, , , , ,[43] Efficient implementation of essentially non-oscillatory shock-capturing schemes J. Computat. Phys 1988 439 471
,[44] A level set approach for computing solutions to incompressible two-phase flow J. Comput. Phys 1994 146 159
, ,[45] R. Tesson, Modélisation mathématique de l’impact de la dynamique des microtubules sur la migration cellulaire. Ph.D. thesis, Aix-Marseille Université, Marseille, France (2017).
[46] High-order DDFV method for level-set equations arising in a cell migration model 2019
[47] A computational model of cell polarization and motility coupling mechanics and biochemistry Multis. Model. Simul 2011 1420 1443
, ,[48] Self-polarization and directional motility of cytoplasm Curr. Biol 1999 S1
, ,[49] Regulation of microtubules in cell migration Trends Cell Biol 2005
, ,[50] Exploring the effect of end-binding proteins and microtubule targeting chemotherapy drugs on microtubule dynamic instability J. Theor. Biol 2017 18 34
, ,[51] Cell motility: can rho GTPases and microtubules point the way? J. Cell Sci. 2001 3795 3803
,[52] Distinct predictive performance of rac1 and Cdc42 in cell migration Nat. Sci. Rep 2015
, , , , ,Cité par Sources :