Microtubules (MT) a key target in oncology: mathematical modeling of anti-MT agents on cell migration
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 63.

Voir la notice de l'article provenant de la source EDP Sciences

Microtubules (MTs) are protein filaments found in all eukaryotic cells which are crucial for many cellular processes including cell movement, cell differentiation, and cell division, making them a key target for anti-cancer treatment. In particular, it has been shown that at low dose, MT targeted agents (MTAs) may induce an anti-migratory effect on cancer and endothelial cells, leading to new prospects in cancer therapy. In that context, we propose to better understand the role of MT dynamics and thus of MTAs on cell migration using a mathematical cell centered model of cell migration taking into account the action of microtubules in the process. The model use a fluid based approach that describes, through level-set techniques, the deformation of the membrane during cell migration. The fluid part of the model is mainly composed of Stokes equations and the biochemical state of the cell is described using Reaction-Diffusion equations. Microtubules act on the biochemical state by activating or inactivating proteins of the Rho-GTPases family. The numerical simulation of the model is performed using Discrete Duality Finite Volume techniques. We describe the different schemes used for the simulation, focusing on the adaptation of preexisting methods to our particular case. Numerical simulation are performed, showing a realistic behavior of the simulated cells in term of shape, speed and microtubules dynamics. Different strategies for a depolymerizing MTA (Vincristin) mechanisms are investigated and show the robutness of our model.
DOI : 10.1051/mmnp/2020004

Emilie Denicolai 1 ; Stéphane Honoré 2, 3 ; Florence Hubert 4 ; Rémi Tesson 4, 5

1 Aix Marseille Univ, CNRS Centrale Marseille, I2M and CNRS, INP, Inst Neurophysiopathol, Faculté de Pharmacie de Marseille, Marseille, France.
2 Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Faculté de Pharmacie de Marseille, UMR 7051, 13385 Marseille, France.
3 Service pharmacie, CHU Hôpital de La Timone, APHM, Marseille, France.
4 Aix Marseille Univ, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France.
5 Centre de mathématiques et de leurs applications, CNRS, ENS Paris-Saclay, Université Paris-Saclay, 94235 Cachan cedex, France.
@article{MMNP_2020_15_a42,
     author = {Emilie Denicolai and St\'ephane Honor\'e and Florence Hubert and R\'emi Tesson},
     title = {Microtubules {(MT)} a key target in oncology: mathematical modeling of {anti-MT} agents on cell migration},
     journal = {Mathematical modelling of natural phenomena},
     eid = {63},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2020004},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020004/}
}
TY  - JOUR
AU  - Emilie Denicolai
AU  - Stéphane Honoré
AU  - Florence Hubert
AU  - Rémi Tesson
TI  - Microtubules (MT) a key target in oncology: mathematical modeling of anti-MT agents on cell migration
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020004/
DO  - 10.1051/mmnp/2020004
LA  - en
ID  - MMNP_2020_15_a42
ER  - 
%0 Journal Article
%A Emilie Denicolai
%A Stéphane Honoré
%A Florence Hubert
%A Rémi Tesson
%T Microtubules (MT) a key target in oncology: mathematical modeling of anti-MT agents on cell migration
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020004/
%R 10.1051/mmnp/2020004
%G en
%F MMNP_2020_15_a42
Emilie Denicolai; Stéphane Honoré; Florence Hubert; Rémi Tesson. Microtubules (MT) a key target in oncology: mathematical modeling of anti-MT agents on cell migration. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 63. doi : 10.1051/mmnp/2020004. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020004/

[1] M. Abercrombie The Croonian lecture, 1978: The crawling movement of metazoan cells Proc. Roy. Soc. Lond. B 1980 129 147

[2] R. Abgrall On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation J. Comput. Phys 1994 45 58

[3] B. Andreianov, F. Boyer, F. Hubert Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes Numer. Methods Partial Differ. Equ 2007 145 195

[4] M. Bailly, J. Condeelis Cell motility: Insights from the backstage Nat. Cell Biol 2003 E292 E294

[5] A. Barlukova, G. Henry, S. Honoré, F. Hubert, D. White In silico modeling microtubule dynamic instability with new mathematical concept of GTP-hydrolysis and aging ESAIM: M2AN 2017

[6] R. Bergès, A. Tchoghandjian, S. Honoré, M.-A. Estève, D. Figarella-Branger, F. Bachmann, H.A. Lane, D. Braguer The novel tubulin-binding checkpoint activator BAL101553 inhibits EB1-dependent migration and invasion and promotes differentiation of glioblastoma stem-like cells Mol. Cancer Ther 2016 2740 2749

[7] P. Brest, L. Le’Negrate, G. Turchi, T.L. Le’Negrate, G. Brest, P.F. Berto, C. Moreilhon, B. Mari, G. Ponzio, P. Hofman Escherichia coli cytotoxic necrotizing factor 1 inhibits intestinal epithelial wound healing in vitro after mechanical injury Infect Immun. 2004 5733 5740

[8] J. Cau, A. Hall Cdc42 controls the polarity of the actin and microtubule cytoskeletons through two distinct signal transduction pathways J. Cell Sci 2005 2579 2587

[9] C. Chainais-Hillairet, S. Krell, A. Mouton Study of discrete duality finite volume schemes for the Peaceman model SIAM J. Sci. Comput 2013 A2928 A2952

[10] S. Clain, S. Diot, R. Loubère A high-order finite volume method for hyperbolic systems: multi-dimensional Optimal Order Detection (MOOD). J. Comput. Phys. 2011 4028 4050

[11] J. Condeelis, R.H. Singer, J.E. Segall the great escape: When cancer cells hijack the genes for chemotaxis and motility Annu. Rev. Cell Dev. Biol 2005 695 718

[12] G.-H. Cottet, Multi-physics and particle methods, Computational Fluid and Solid Mechanics 2003, edited by K.J. Bathe. Elsevier Science Ltd, Oxford (2003) 1296–1298.

[13] G.-H. Cottet, E. Maitre A level set method for fluid-structure interactions with immersed surfaces Math. Models Methods Appl. Sci 2006 415 438

[14] G.H. Cottet, E. Maitre, T. Milcent Eulerian formulation and level set models for incompressible fluid-structure interaction ESAIM: M2AN 2008 471 492

[15] Y. Deguchi, M. Harada, R. Shinohara, M. Lazarus, Y. Cherasse, Y. Urade, D. Yamada, M. Sekiguchi, D. Watanabe, T. Furuyashiki, S. Narumiya mDia and ROCK mediate actin-dependent presynaptic remodeling regulating synaptic efficacy and anxiety Cell Reports 2016 2405 2417

[16] E. Denicolaï, R. Tesson, C. Ricard, F. Hubert, S. Honoré Mathematical modeling of the effect of microtubule dynamicsinstability on glioblastoma cells migration 2019

[17] K. Domelevo, P. Omnes A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids ESAIM: M2AN 2005 1203 1249

[18] C. Etchegaray, B. Grec, B. Maury, N. Meunier and L. Navoret, An integro-differential equation for 1D cell migration, Integral Methods in Science and Engineering (IMSE) (Karlsruhe, Germany), Integral Methods in Science and Engineering – Theoretical and Computational Advances. Springer (2014) 195–207.

[19] S. Etienne-Manneville Microtubules in cell migration Annu. Rev. Cell Dev. Biol 2013 471 499

[20] E.E. Evers, G.C.M. Zondag, A Malliri, L.S Price J.-P. ten Klooster, R.A. van der Kammen and J.G Collard, Rho family proteins in cell adhesion and cell migration Eur. J. Cancer 2000 1269 1274

[21] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, Solution of Equation in ℝn (Part 3), Techniques of Scientific Computing (Part 3), Handbook of Numerical Analysis, vol. 7. Elsevier (2000) 713–1018.

[22] O. Friedrich Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids J. Comput. Phys 1998 194 212

[23] O. Gallinato, M. Ohta, C. Poignard, T. Suzuki Free boundary problem for cell protrusion formations: theoretical and numerical aspects J. Math. Biol 2017 263 307

[24] F. Gibou, R. Fedkiw, S. Osher A review of level-set methods and some recent applications J. Comput. Phys 2018 82 109

[25] A. Harten, S. Osher Uniformly high-order accurate nonoscillatory schemes. I SIAM J. Numer. Anal 1987 279 309

[26] A. Harten, S. Osher, B. Engquist, S.R. Chakravarthy Some results on uniformly high-order accurate essentially nonoscillatory schemes Appl. Numer. Math 1986 347 377

[27] A. Harten, B. Engquist, S. Osher, S.R. Chakravarthy Uniformly high order accurate essentially non-oscillatory schemes, III J. Computat. Phys 1997 3 47

[28] F. Hermeline A finite volume method for the approximation of diffusion operators on distorted meshes J. Comput. Phys 2000 481 499

[29] C. Hu, C.-W. Shu Weighted essentially non-oscillatory schemes on triangular meshes J. Comput. Phys 1999 97 127

[30] F. Hubert, M. Tournus, D. White, S. Honoré A growth-fragmentation approach for modeling microtubule dynamic instability Bull. Math. Biol 2019 722 758

[31] G.-S. Jiang, C.-W. Shu Efficient implementation of weighted ENO schemes J. Comput. Phys 1996 202 228

[32] I. Kaverina, A. Straube Regulation of cell migration by dynamic microtubules Semin. Cell. Dev. Biol 2011

[33] S. Krell Stabilized DDFV schemes for stokes problem with variable viscosity on general 2d meshes Numer. Methods Part. Differ. Equ 2011 1666 1706

[34] C.D. Lawson, A.J. Ridley Rho GTPase signaling complexes in cell migration and invasion J. Cell Biol 2018 447 457

[35] R. Maccioni, N.W. Seeds Stoichiometry of GTP hydrolysis and tubulin polymerization Proc. Natl. Acad. Sci. Biochem 1977

[36] M.S. Mizuhara, L. Berlyand and I.S. Aronson, Minimal Model of Directed Cell Motility on Patterned Substrates. Preprint arXiv:1705.05990 (2017).

[37] S. Narumiya, M. Tanji, T. Ishizaki Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion Cancer Metast. Rev 2009 65 76

[38] A. Nehlig, A. Molina, S. Rodrigues-Ferreira, S. Honoré, C. Nahmias Regulation of end-binding protein EB1 in the control of microtubule dynamics Cell. Mol. Life Sci 2017 2381 2393

[39] S. Osher, R.P. Fedkiw Level set methods: An overview and some recent results J. Comput. Phys 2001 463 502

[40] J.S. Park, S.-H. Yoon, C. Kim Multi-dimensional limiting process for hyperbolic conservation laws on unstructured grids J. Comput. Phys 2010 788 812

[41] T.D. Pollard, G.G. Borisy Cellular motility driven by assembly and disassembly of actin filaments Cell 2003 453 465

[42] E.E. Sander, J.P. Ten Klooster, S. Van Delft, R.A. Van Der, Kammen, J.G. Collard Rac downregulates rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior J. Cell. Biol 1999 1009 1022

[43] C.-W. Shu, S. Osher Efficient implementation of essentially non-oscillatory shock-capturing schemes J. Computat. Phys 1988 439 471

[44] M. Sussman, P. Smereka, S. Osher A level set approach for computing solutions to incompressible two-phase flow J. Comput. Phys 1994 146 159

[45] R. Tesson, Modélisation mathématique de l’impact de la dynamique des microtubules sur la migration cellulaire. Ph.D. thesis, Aix-Marseille Université, Marseille, France (2017).

[46] R. Tesson High-order DDFV method for level-set equations arising in a cell migration model 2019

[47] B. Vanderlei, J.J. Feng, L. Edelstein-Keshet A computational model of cell polarization and motility coupling mechanics and biochemistry Multis. Model. Simul 2011 1420 1443

[48] A.B. Verkhovsky, T.M. Svitkina, G.G. Borisy Self-polarization and directional motility of cytoplasm Curr. Biol 1999 S1

[49] T. Watanabe, J. Noritake, K. Kaibuchi Regulation of microtubules in cell migration Trends Cell Biol 2005

[50] D. White, S. Honoré, F. Hubert Exploring the effect of end-binding proteins and microtubule targeting chemotherapy drugs on microtubule dynamic instability J. Theor. Biol 2017 18 34

[51] T. Wittmann, C.M. Waterman-Storer Cell motility: can rho GTPases and microtubules point the way? J. Cell Sci. 2001 3795 3803

[52] M. Yamao, H. Naoki, K. Kunida, K. Aoki, M. Matsuda, S. Ishii Distinct predictive performance of rac1 and Cdc42 in cell migration Nat. Sci. Rep 2015

Cité par Sources :