Fractional order prey-predator model with infected predators in the presence of competition and toxicity
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 38.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, we propose a fractional-order prey-predator model with reserved area in the presence of the toxicity and competition. We prove different mathematical results like existence, uniqueness, non negativity and boundedness of the solution for our model. Further, we discuss the local and global stability of these equilibria. Finally, we perform numerical simulations to prove our results.
DOI : 10.1051/mmnp/2020002

M. R. Lemnaouar 1 ; M. Khalfaoui 1 ; Y. Louartassi 1, 2 ; I. Tolaimate 1

1 Mohammed V University in Rabat, Superior School of Technology Salé, LASTIMI, Salé, Morocco.
2 Mohammed V University in Rabat, Faculty of Science, Lab-Mia, Rabat, Morocco.
@article{MMNP_2020_15_a21,
     author = {M. R. Lemnaouar and M. Khalfaoui and Y. Louartassi and I. Tolaimate},
     title = {Fractional order prey-predator model with infected predators in the presence of competition and toxicity},
     journal = {Mathematical modelling of natural phenomena},
     eid = {38},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2020002},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020002/}
}
TY  - JOUR
AU  - M. R. Lemnaouar
AU  - M. Khalfaoui
AU  - Y. Louartassi
AU  - I. Tolaimate
TI  - Fractional order prey-predator model with infected predators in the presence of competition and toxicity
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020002/
DO  - 10.1051/mmnp/2020002
LA  - en
ID  - MMNP_2020_15_a21
ER  - 
%0 Journal Article
%A M. R. Lemnaouar
%A M. Khalfaoui
%A Y. Louartassi
%A I. Tolaimate
%T Fractional order prey-predator model with infected predators in the presence of competition and toxicity
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020002/
%R 10.1051/mmnp/2020002
%G en
%F MMNP_2020_15_a21
M. R. Lemnaouar; M. Khalfaoui; Y. Louartassi; I. Tolaimate. Fractional order prey-predator model with infected predators in the presence of competition and toxicity. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 38. doi : 10.1051/mmnp/2020002. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020002/

[1] E. Ahmed, A. Elgazzar On fractional order differential equations model for nonlocal epidemics Physica A 2007 607 614

[2] E. Ahmed, E.-S. Ama, El-Saka, A.A. Hala On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rässler, Chua and Chen systems Phys. Lett. A 2006 1 4

[3] A.A. Berryman The origins and evolutions of predator-prey theory Ecology 1992 1530 1535

[4] K. Chakraborty, K. Das Modeling and analysis of a two-zooplankton one-phytoplankton system in the presence of toxicity Appl. Math. Model 2015 1241 1265

[5] D.R. Curtiss Recent extentions of descartes rule of signs Ann. Math 1918 251 278

[6] T. Das, R.N. Mukherjee, K.S. Chaudhuri Harvesting of a prey–predator fishery in the presence of toxicity Appl. Math. Model 2009 2282 2292

[7] B. Dubey A prey–predator model with a reserved area Nonlinear Anal. Model. Control 2007 479 494

[8] B. Dubey, P. Chandra, P. Sinha A model for fishery resource with reserve area Nonlinear Anal. Real World Appl 2003 625 637

[9] M. Edelman, Fractional maps as maps with power-law memory. Nonlinear dynamics and complexity. Springer, Cham (2014) 79–120.

[10] A. Elsadany, A. Matouk Dynamical behaviors of fractional-order Lotka-Volterra predator-prey model and its discretization J. Appl. Math. Comput 2015 269 283

[11] S. Jana, A. Ghorai, S. Guria, T.K. Kar Global dynamics of a predator weaker prey and stronger prey system Appl. Math. Comput 2015 235 248

[12] T.K. Kar A model for fishery resource with reserve area and facing prey predator interactions Can. Appl. Math. Quart 2006 385 399

[13] Y. Li, Y. Chen, I. Podlubny Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability Comp. Math. Appl 2010 1810 1821

[14] Y. Louartassi, A. Alla, K. Hattaf, A. Nabil Dynamics of a predator–prey model with harvesting and reserve area for prey in the presence of competition and toxicity J. Appl. Math. Comput 2018 305 321

[15] Y. Louartassi, E. El Mazoudi, N. Elalami A new generalization of lemma Gronwall-Bellman Appl. Math. Sci 2012 621 628

[16] R.L. Magin Fractional calculus in bioengineering CRC Crit. Rev. Biomed. Eng 2004 1 377

[17] D. Matignon Stability results for fractional differential equations with applications to control processing Proc. Comput. Eng. Syst. Appl. Multiconf 1996 963 968

[18] R.M. May, Stability and complexity in model ecosystems. Princeton University Press, Princeton, New Jersey (1973).

[19] T.M. Michelitsch, G.A. Maugin, F.C.G.A. Nicolleau, A.F. Nowakowski, S. Derogar Dispersion relations and wave operators in self-similar quasicontinuous linear chains Phys. Rev. E 2009 011135

[20] A. Mouaouine, A. Boukhouima, K. Hattaf, N. Yousfi A fractional order SIR epidemic model with nonlinear incidence rate Adv. Differ. Equ 2018 160

[21] K. Oldham and J. Spanier, Vol. 111 of The fractional calculus theory and applications of differentiation and integration to arbitrary order. Elseiver, Amsterdam (1974).

[22] I. Podlubny, Vol. 198 of Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to methods of their Solution and Some of their applications. Elsevier, Amsterdam (1998).

[23] M. Riesz L’intégrale de Riemann-Liouville et le probléme de Cauchy Acta Math 1949 1 222

[24] B. Ross, S.G. Samko, E. Russel Love Functions that have no First Order Derivative might have fractional derivatives of all ordersless than one Real Anal. Exchange 1994 140 157

[25] M. Sambath, P. Ramesh, K. Balachandran Asymptotic behavior of the fractional order three species prey–predator model Int. J. Nonlinear Sci. Numer. Simul 2018 721 733

[26] S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Derivatives: Theory and Applications (1993).

[27] J.B. Shukla, A.K. Agrawal, B. Dubey, P. Sinha Existence and survival of two competing species in a polluted environment: a mathematical model J. Biol. Syst 2001 89 103

[28] C. Vargas De-León Volterra-type Lyapunov functions for fractional-order epidemic systems Commun. Nonlinear Sci. Numer. Simul 2015 75 85

[29] H. Yang, J. Jia Harvesting of a predator–prey model with reserve area for prey and in the presence of toxicity J. Appl. Math. Comput 2017 693 708

[30] X.Q. Zhao. Dynamical Systems in Population Biology. Springer New York (2000).

Cité par Sources :