The global stability of a class of history-dependent macroeconomic models
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 49.

Voir la notice de l'article provenant de la source EDP Sciences

We consider piecewise-linear, discrete-time, macroeconomic models that have a continuum of feasible equilibrium states. The non-trivial equilibrium set and resulting path-dependence are induced by stickiness in either expectations or the response of the Central Bank. For a low-dimensional variant of the model with one representative agent, and also for a multi-agent model, we show that when exogenous noise is absent from the system the continuum of equilibrium states is the global attractor and each solution trajectory converges exponentially to one of the equilibria. Further, when a uniformly bounded noise is present, or the equilibrium states are destabilized by an imperfect Central Bank policy (or both), we estimate the size of the domain that attracts all the trajectories. The proofs are based on introducing a family of Lyapunov functions and, for the multi-agent model, deriving a formula for the inverse of the Prandtl-Ishlinskii operator acting in the space of discrete-time inputs and outputs.
DOI : 10.1051/mmnp/2019061

Harbir Lamba 1 ; Pavel Krejčí 2, 3 ; Dmitrii Rachinskii 4

1 Department of Mathematical Sciences George Mason University, VA, USA.
2 Institute of Mathematics of the Czech Academy of Sciences, Prague, Czech Republic.
3 Faculty of Civil Engineering, Czech Technical University, Prague, Czech Republic.
4 Department of Mathematical Sciences, The University of Texas at Dallas, TX, USA.
@article{MMNP_2020_15_a54,
     author = {Harbir Lamba and Pavel Krej\v{c}{\'\i} and Dmitrii Rachinskii},
     title = {The global stability of a class of history-dependent macroeconomic models},
     journal = {Mathematical modelling of natural phenomena},
     eid = {49},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2019061},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019061/}
}
TY  - JOUR
AU  - Harbir Lamba
AU  - Pavel Krejčí
AU  - Dmitrii Rachinskii
TI  - The global stability of a class of history-dependent macroeconomic models
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019061/
DO  - 10.1051/mmnp/2019061
LA  - en
ID  - MMNP_2020_15_a54
ER  - 
%0 Journal Article
%A Harbir Lamba
%A Pavel Krejčí
%A Dmitrii Rachinskii
%T The global stability of a class of history-dependent macroeconomic models
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019061/
%R 10.1051/mmnp/2019061
%G en
%F MMNP_2020_15_a54
Harbir Lamba; Pavel Krejčí; Dmitrii Rachinskii. The global stability of a class of history-dependent macroeconomic models. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 49. doi : 10.1051/mmnp/2019061. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019061/

[1] G. Antinolfi, C. Azariadis, J.B. Bullard Monetary policy as equilibrium selection Rev. Federal Reserve Bank Saint Louis 2007 331 342

[2] M. Al Janaideh, S. Rakheja, C.Y. Su A generalized Prandtl-Ishlinskii model for characterizing the hysteresis and saturation nonlinearities of smart actuators Smart Mater. Struct 2009 045001

[3] M. Arnold, N. Begun, P. Gurevich, E. Kwame, H. Lamba, D. Rachinskii Dynamics of discrete time systems with a hysteresis stop operator SIAM J. Appl. Dyn. Syst 2017 91 119

[4] V. Avrutin and I. Sushko, A gallery of bifurcation scenarios in piecewise smooth 1d maps, in Global Analysis of Dynamic Models in Economics and Finance. Springer (2013) 369–395.

[5] L.M. Ball Hysteresis in unemployment: Old and new evidence The National Bureau of Economic Research Working Paper 2009 1 35

[6] O. Blanchard, J. Wolfers The roles of shocks and institutions in the rise of European unemployment: the aggregate evidence Econ. J 2000 C1 C33

[7] J. Benhabib and R.E.A. Farmer, Indeterminacy and sunspots in macroeconomics. In Vol. 1 of Handbook of Macroeconomics (1999) 387–448.

[8] A. Bick Threshold effects of inflation on economic growth in developing countries Econ. Lett 2010 126 129

[9] M. Brokate and J. Sprekels, Hysteresis and Phase Transitions. Springer Series in Computational Mathematics. Springer Berlin Heidelberg (1996).

[10] W.A. Branch Sticky information and model uncertainty in survey data on inflation expectations J. Econ. Dyn. Control 2007 245 276

[11] C.D. Carroll Macroeconomic expectations of households and professional forecasters Quart. J. Econ 2003 269 298

[12] G.A. Calvo Staggered prices in a utility-maximizing framework J. Monet. Econ 1983 383 398

[13] L. J. Christiano, M. Trabandt and K. Walentin, DSGE models for monetary policy analysis, in Handbook of Monetary Economics, edited by B.B. Friedman and M. Woodford. Elsevier (2010) 285–367.

[14] D. Colander, P. Howitt, A. Kirman, A. Leijonhufvud, P. Mehrling Beyond DSGE models: toward an empirically based macroeconomics Am. Econ. Rev 2008 236 240

[15] R. Curtin Inflation expectations and empirical tests Inflation Expect 2010 34 61

[16] J. Darby, R. Cross and L. Piscitelli, Hysteresis and unemployment: a preliminary investigation. Vol. 1 of The Science of Hysteresis, edited by G. Bertotti, I. Mayergoyz. Elsevier (2006) 667–699.

[17] G.W. Evans, B. McGough, Observability and equilibrium selection. Tech. rep., Mimeo, University of Oregon (2015).

[18] X. Gabaix A sparsity-based model of bounded rationality Quart. J. Econ 2014 1661 1710

[19] P.D. Grauwe Booms and busts in economic activity: a behavioral explanation J. Econ. Behav. Organ 2012 484 501

[20] M. Göcke Various concepts of hysteresis applied in economics J. Econ. Surv 2002 167 188

[21] M. Göcke, L. Werner Play hysteresis in supply or in demand as part of a market model Metroeconomica 2015 339 374

[22] J.M. Frimpong, E.F. Oteng-Abayie When is inflation harmful? Estimating the threshold effect for Ghana Am. J. Econ. Bus. Admin 2010 232 239

[23] G. Fuchs Structural stability for dynamical economic models J. Math. Econ 1975 139 154

[24] R. F. Hartl, P.M. Kort History dependence without unstable steady state: a non-differentiable framework J. Math. Econ 2003 891 900

[25] B.D. Keen Output, inflation, and interest rates in an estimated optimizing model of monetary policy Rev. Econ. Dyn 2009 327 343

[26] A. Ishlinskii Some applications of statistical methods to describing deformations of bodies Izv. A.N. S.S.S.R., Techn. Ser 1944 583 590

[27] N. Kaldor The irrelevance of equilibrium economics Econ. J 1972 1237 1255

[28] J.M. Keynes, Poverty in plenty: is the economic system self-adjusting?, The Listener, London, CWK (1934) 489–497.

[29] M.S. Khan, A.S. Senhadji Threshold effects in the relationship between inflation and growth IMF Staff Papers 2001 1 21

[30] M.A. Krasnosel’skii and A.V. Pokrovskii, Systems with Hysteresis. Springer (1989).

[31] S. Kremer, A. Bick, D. Nautz Inflation and growth: new evidence from a dynamic panel threshold analysis Empir. Econ 2013 861 878

[32] P. Krejčí, H. Lamba, S. Melnik, D. Rachinskii Analytical solutions for a class of network dynamics with mechanical and financial applications Phys. Rev. E 2014 032822

[33] P. Krejčí, P. Laurençot Hysteresis filtering in the space of bounded measurable functions Boll. Unione Mat. Ital 2002 755 772

[34] P. Krejčí, E. Kwame, H. Lamba and D. Rachinskii, A continuum of path-dependent equilibrium solutions induced by sticky expectations. Preprint arXiv:1711.08038 (2017).

[35] P. Krejčí, J. Sprekels Elastic-ideally plastic beams and Prandtl-Ishlinskii hysteresis operators Math. Meth. Appl. Sci 2007 2371 2393

[36] P. Krejčí Hysteresis and periodic solutions of semilinear and quasilinear wave equation Math. Z 1986 247 264

[37] P. Krejčí, H. Lamba, S. Melnik, D. Rachinskii Kurzweil integral representation of interacting Prandtl-Ishlinskii operators Discr. Continu. Dyn. Syst. B 2015 2949 2965

[38] P. Krejčí, H. Lamba, G.A. Monteiro, D. Rachinskii Kurzweil integral in financial market modelling Math. Bohem 2016 261 286

[39] V. Lampaert, F. Al-Bender and J. Swevers, A generalized Maxwell-slip friction model appropriate for control purposes, in 2003 IEEE International Workshop on Workload Characterization (2003) 1170–1177.

[40] G.N. Mankiw, R. Reis Sticky information versus sticky prices: a proposal to replace the New Keynesian Phillips curve Quart. J.Econ 2002 1295 1328

[41] A. Marshall, Principles of Economics. Macmillan (1890).

[42] P. Mirowski, More Heat Than Light. Cambridge University Press (1989).

[43] J.F. Muth Rational expectations and the theory of price movements Econometrica 1961 315 335

[44] B.A. Maćkowiak, M. Wiederholt Business cycle dynamics under rational inattention Rev. Econ. Stud 2015 1502 1532

[45] G.N. Mankiw, R. Reis, J. Wolfers Disagreement about inflation expectations NBER Macroecon. Annu 2003 209 248

[46] L. Prandtl Ein Gedankenmodell zur kinetischen Theorie der festen Körper J. Appl. Math. Mech 1928 85 106

[47] D. Rachinskii Equivalent combinations of stops Automat. Remote Control 1998 1370 1378

[48] J. Robinson History versus equilibrium Indian Econ. J 1974 202 213

[49] J. Rudd, K. Whelan Can rational expectations sticky-price models explain inflation dynamics? Am. Econ. Rev. 2006 303 320

[50] I. Rychlik A new definition of the rainflow cycle counting method Int. J. Fatigue 1987 119 121

[51] A.M. Sbordone, A. Tambalotti, K. Rao, K.J. Walsh Policy analysis using DSGE models: an introduction Econ. Policy Rev 2010 23 43

[52] M. Setterfield Should economists dispense with the notion of equilibrium? J. Post Keynes. Econ. 1997 47 76

[53] C.A. Sims, Rational Inattention and Monetary Economics. Vol. 3 of Handbook of Monetary Economics, edited by B.M. Friedman, M. Woodford. Elsevier (2010) 155–181.

[54] C.A. Sims Implications of rational inattention J. Monet. Econ 2003 665 690

[55] N.L. Stokey, The Economics of Inaction: Stochastic Control Models with Fixed Costs. Princeton University Press (2009).

[56] J.B. Taylor The inflation/output variability trade-off revisited Federal Reserve Bank of Boston Conf. Ser 1994 21 38

[57] T. Vinayagathasan Inflation and economic growth: a dynamic panel threshold analysis for Asian economies J. Asian Econ 2013 31 41

Cité par Sources :