Temporal cavity solitons in a delayed model of a dispersive cavity ring laser
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 47.

Voir la notice de l'article provenant de la source EDP Sciences

Nonlinear localised structures appear as solitary states in systems with multistability and hysteresis. In particular, localised structures of light known as temporal cavity solitons were observed recently experimentally in driven Kerr-cavities operating in the anomalous dispersion regime when one of the two bistable spatially homogeneous steady states exhibits a modulational instability. We use a distributed delay system to study theoretically the formation of temporal cavity solitons in an optically injected ring semiconductor-based fiber laser, and propose an approach to derive reduced delay-differential equation models taking into account the dispersion of the intracavity fiber delay line. Using these equations we perform the stability and bifurcation analysis of injection-locked continuous wave states and temporal cavity solitons.
DOI : 10.1051/mmnp/2019054

Alexander Pimenov 1 ; Shalva Amiranashvili 1 ; Andrei G. Vladimirov 1, 2

1 Weierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany.
2 Lobachevsky State University of Nizhni Novgorod, pr. Gagarina 23, Nizhni Novgorod 603950, Russia.
@article{MMNP_2020_15_a53,
     author = {Alexander Pimenov and Shalva Amiranashvili and Andrei G. Vladimirov},
     title = {Temporal cavity solitons in a delayed model of a dispersive cavity ring laser},
     journal = {Mathematical modelling of natural phenomena},
     eid = {47},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2019054},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019054/}
}
TY  - JOUR
AU  - Alexander Pimenov
AU  - Shalva Amiranashvili
AU  - Andrei G. Vladimirov
TI  - Temporal cavity solitons in a delayed model of a dispersive cavity ring laser
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019054/
DO  - 10.1051/mmnp/2019054
LA  - en
ID  - MMNP_2020_15_a53
ER  - 
%0 Journal Article
%A Alexander Pimenov
%A Shalva Amiranashvili
%A Andrei G. Vladimirov
%T Temporal cavity solitons in a delayed model of a dispersive cavity ring laser
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019054/
%R 10.1051/mmnp/2019054
%G en
%F MMNP_2020_15_a53
Alexander Pimenov; Shalva Amiranashvili; Andrei G. Vladimirov. Temporal cavity solitons in a delayed model of a dispersive cavity ring laser. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 47. doi : 10.1051/mmnp/2019054. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019054/

[1] N. Akhmediev and A. Ankiewicz, editors, Dissipative Solitons. Springer, Berlin, Heidelberg (2005).

[2] G.A. Baker and P. Graves-Moris, Padé approximants. Part I: basic theory. Addison-Wesley (1981).

[3] U. Bandelow, M. Radziunas, A. Vladimirov, B. Huettl, R. Kaiser 40 GHz modelocked semiconductor lasers: Theory, simulations and experiment Opt. Quant. Electr 2006 495 512

[4] M. Brambilla, L. Lugiato, F. Prati, L. Spinelli, W. Firth Spatial soliton pixels in semiconductor devices Phys. Rev. Lett 1997 2042

[5] K. Engelborghs, T. Luzyanina and G. Samaey, DDE-BIFTOOL v.2.00: A MATLAB package for bifurcation analysis of delay differential equations. Technical Report TW-330, Department of Computer Science, K.U.Leuven, Leuven, Belgium (2001).

[6] W.J. Firth, A. J. Scroggie Optical bullet holes: Robust controllable localized states of a nonlinear cavity Phys. Rev. Lett 1996 1623 1626

[7] B. Garbin, J. Javaloyes, G. Tissoni, S. Barland Topological solitons as addressable phase bits in a driven laser Nat. Commun 2015

[8] F. Gustave, L. Columbo, G. Tissoni, M. Brambilla, F. Prati, B. Kelleher, B. Tykalewicz, S. Barland Dissipative phase solitons in semiconductor lasers Phys. Rev. Lett 2015 043902

[9] T. Hansson, S. Wabnitz Frequency comb generation beyond the Lugiato-Lefever equation: multi-stability and super cavity solitons J. Opt. Soc. Am. B 2015 1259 1266

[10] L. Jaurigue, B. Krauskopf, K. Lüdge Multipulse dynamics of a passively mode-locked semiconductor laser with delayed optical feedback Chaos 2017 114301

[11] Y. Kartashov, O. Alexander, D. Skryabin Multistability and coexisting soliton combs in ring resonators: the Lugiato-Lefever approach Opt. Express 2017 11550 11555

[12] F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, M. Haelterman Temporal cavity solitons in one-dimensional kerr media as bits in an all-optical buffer Nat. Photon 2010 471

[13] F. Leo, L. Gelens, P. Emplit, M. Haelterman, S. Coen Dynamics of one-dimensional Kerr cavity solitons Opt. Express 2013 9180 9191

[14] L.A. Lugiato, R. Lefever Spatial dissipative structures in passive optical systems Phys. Rev. Lett 1987 2209

[15] M. Marconi, J. Javaloyes, S. Balle, M. Giudici How lasing localized structures evolve out of passive mode locking Phys. Rev. Lett 2014 223901

[16] M. Marconi, J. Javaloyes, S. Barland, S. Balle, M. Giudici Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays Nat. Photon 2015 450 455

[17] C. Otto, K. Lüdge, A. G. Vladimirov, M. Wolfrum, E. Schöll Delay-induced dynamics and jitter reduction of passively mode-locked semiconductor lasers subject to optical injection N. J. Phys 2012 113033

[18] A. Pimenov, A. G. Vladimirov, S. V. Gurevich, K. Panajotov, G. Huyet, M. Tlidi Delayed feedback control of self-mobile cavity solitons Phys. Rev. A 2013 053830

[19] A. Pimenov, S. Slepneva, G. Huyet, A.G. Vladimirov Dispersive time-delay dynamical systems Phys. Rev. Lett 2017 193901

[20] H.-G. Purwins, H. U. Bödeker, S. Amiranashvili Dissipative solitons Adv. Phys 2010 485 701

[21] N. Rosanov, G. Khodova Diffractive autosolitons in nonlinear interferometers J. Opt. Soc. Am. B 1990 1057 1065

[22] N.N. Rosanov, Spatial Hysteresis and Optical Patterns. Springer Series in Synergetics. Springer (2002).

[23] C. Schelte, J. Javaloyes, S.V. Gurevich Dynamics of temporally localized states in passively mode-locked semiconductor lasers Phys. Rev. A 2018 053820

[24] A. Scroggie, W. Firth, G. Mcdonald, M. Tlidi, R. Lefever, L.A. Lugiato Pattern formation in a passive kerr cavity Chaos Solitons Fractals 1994 1323 1354

[25] S. Slepneva, B. Kelleher, B. O’Shaughnessy, S. Hegarty, A.G. Vladimirov, G. Huyet Dynamics of fourier domain mode-locked lasers Opt. Express 2013 19240 19251

[26] M. Tlidi, P. Mandel, R. Lefever Localized structures and localized patterns in optical bistability Phys. Rev. Lett 1994 640

[27] M. Tlidi, A. Vladimirov, D. Pieroux, D. Turaev Spontaneous motion of cavity solitons induced by a delayed feedback Phys. Rev. Lett 2009 103904

[28] M. Tlidi, E. Averlant, A. Vladimirov, K. Panajotov Delay feedback induces a spontaneous motion of two-dimensional cavity solitons in driven semiconductor microcavities Phys. Rev. A 2012 033822

[29] M. Tlidi, K. Panajotov, M. Ferré, M. G. Clerc Drifting cavity solitons and dissipative rogue waves induced by time-delayed feedback in kerr optical frequency comb and in all fiber cavities Chaos 2017 114312

[30] A. Vladimirov, S. Fedorov, N. Kaliteevskii, G. Khodova, N. Rosanov Numerical investigation of laser localized structures J. Opt. B: Quant. Semiclass. Opt 1999 101 106

[31] A. Vladimirov, A. Pimenov, S. Gurevich, K. Panajotov, E. Averlant, M. Tlidi Cavity solitons in vertical-cavity surface-emitting lasers Philos. Trans. Royal Soc. A 2014 20140013

[32] A.G. Vladimirov, D. Turaev New model for mode-locking in semiconductor lasers Radiophys. Quant. Electr 2004 857 865

[33] A.G. Vladimirov, D. Turaev Model for passive mode-locking in semiconductor lasers Phys. Rev. A 2005 033808

[34] A.G. Vladimirov, N.N. Rozanov, S.V. Fedorov, G. Khodova Bifurcation analysis of laser autosolitons Quantum Electr 1997 949 952

[35] A.G. Vladimirov, N.N. Rozanov, S.V. Fedorov, G. Khodova Analysis of the stability of laser solitons Quantum Electr 1998 55 57

[36] A.G. Vladimirov, D. Turaev, G. Kozyreff Delay differential equations for mode-locked semiconductor lasers Opt. Lett 2004 1221 1223

[37] A.G. Vladimirov, A.S. Pimenov, D. Rachinskii Numerical study of dynamical regimes in a monolithic passively mode-locked semiconductor laser IEEE J. Quantum Electr 2009 462 468

[38] A.G. Vladimirov, G. Huyet, A. Pimenov Delay differential models in multimode laser dynamics: taking chromatic dispersion into account Proc. SPIE 2016

[39] S. Yanchuk, M. Wolfrum A multiple time scale approach to the stability of external cavity modes in the Lang-Kobayashi system using the limit of large delay SIAM J. Appl. Dyn. Syst 2010 519 535

[40] V.E. Zakharov, A.B. Shabat Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media Sov. Phys. JETP 1972 62 69

Cité par Sources :