Voir la notice de l'article provenant de la source EDP Sciences
Alexander Pimenov 1 ; Shalva Amiranashvili 1 ; Andrei G. Vladimirov 1, 2
@article{MMNP_2020_15_a53, author = {Alexander Pimenov and Shalva Amiranashvili and Andrei G. Vladimirov}, title = {Temporal cavity solitons in a delayed model of a dispersive cavity ring laser}, journal = {Mathematical modelling of natural phenomena}, eid = {47}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2019054}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019054/} }
TY - JOUR AU - Alexander Pimenov AU - Shalva Amiranashvili AU - Andrei G. Vladimirov TI - Temporal cavity solitons in a delayed model of a dispersive cavity ring laser JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019054/ DO - 10.1051/mmnp/2019054 LA - en ID - MMNP_2020_15_a53 ER -
%0 Journal Article %A Alexander Pimenov %A Shalva Amiranashvili %A Andrei G. Vladimirov %T Temporal cavity solitons in a delayed model of a dispersive cavity ring laser %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019054/ %R 10.1051/mmnp/2019054 %G en %F MMNP_2020_15_a53
Alexander Pimenov; Shalva Amiranashvili; Andrei G. Vladimirov. Temporal cavity solitons in a delayed model of a dispersive cavity ring laser. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 47. doi : 10.1051/mmnp/2019054. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019054/
[1] N. Akhmediev and A. Ankiewicz, editors, Dissipative Solitons. Springer, Berlin, Heidelberg (2005).
[2] G.A. Baker and P. Graves-Moris, Padé approximants. Part I: basic theory. Addison-Wesley (1981).
[3] 40 GHz modelocked semiconductor lasers: Theory, simulations and experiment Opt. Quant. Electr 2006 495 512
, , , ,[4] Spatial soliton pixels in semiconductor devices Phys. Rev. Lett 1997 2042
, , , ,[5] K. Engelborghs, T. Luzyanina and G. Samaey, DDE-BIFTOOL v.2.00: A MATLAB package for bifurcation analysis of delay differential equations. Technical Report TW-330, Department of Computer Science, K.U.Leuven, Leuven, Belgium (2001).
[6] Optical bullet holes: Robust controllable localized states of a nonlinear cavity Phys. Rev. Lett 1996 1623 1626
,[7] Topological solitons as addressable phase bits in a driven laser Nat. Commun 2015
, , ,[8] Dissipative phase solitons in semiconductor lasers Phys. Rev. Lett 2015 043902
, , , , , , ,[9] Frequency comb generation beyond the Lugiato-Lefever equation: multi-stability and super cavity solitons J. Opt. Soc. Am. B 2015 1259 1266
,[10] Multipulse dynamics of a passively mode-locked semiconductor laser with delayed optical feedback Chaos 2017 114301
, ,[11] Multistability and coexisting soliton combs in ring resonators: the Lugiato-Lefever approach Opt. Express 2017 11550 11555
, ,[12] Temporal cavity solitons in one-dimensional kerr media as bits in an all-optical buffer Nat. Photon 2010 471
, , , , ,[13] Dynamics of one-dimensional Kerr cavity solitons Opt. Express 2013 9180 9191
, , , ,[14] Spatial dissipative structures in passive optical systems Phys. Rev. Lett 1987 2209
,[15] How lasing localized structures evolve out of passive mode locking Phys. Rev. Lett 2014 223901
, , ,[16] Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays Nat. Photon 2015 450 455
, , , ,[17] Delay-induced dynamics and jitter reduction of passively mode-locked semiconductor lasers subject to optical injection N. J. Phys 2012 113033
, , , ,[18] Delayed feedback control of self-mobile cavity solitons Phys. Rev. A 2013 053830
, , , , ,[19] Dispersive time-delay dynamical systems Phys. Rev. Lett 2017 193901
, , ,[20] Dissipative solitons Adv. Phys 2010 485 701
, ,[21] Diffractive autosolitons in nonlinear interferometers J. Opt. Soc. Am. B 1990 1057 1065
,[22] N.N. Rosanov, Spatial Hysteresis and Optical Patterns. Springer Series in Synergetics. Springer (2002).
[23] Dynamics of temporally localized states in passively mode-locked semiconductor lasers Phys. Rev. A 2018 053820
, ,[24] Pattern formation in a passive kerr cavity Chaos Solitons Fractals 1994 1323 1354
, , , , ,[25] Dynamics of fourier domain mode-locked lasers Opt. Express 2013 19240 19251
, , , , ,[26] Localized structures and localized patterns in optical bistability Phys. Rev. Lett 1994 640
, ,[27] Spontaneous motion of cavity solitons induced by a delayed feedback Phys. Rev. Lett 2009 103904
, , ,[28] Delay feedback induces a spontaneous motion of two-dimensional cavity solitons in driven semiconductor microcavities Phys. Rev. A 2012 033822
, , ,[29] Drifting cavity solitons and dissipative rogue waves induced by time-delayed feedback in kerr optical frequency comb and in all fiber cavities Chaos 2017 114312
, , ,[30] Numerical investigation of laser localized structures J. Opt. B: Quant. Semiclass. Opt 1999 101 106
, , , ,[31] Cavity solitons in vertical-cavity surface-emitting lasers Philos. Trans. Royal Soc. A 2014 20140013
, , , , ,[32] New model for mode-locking in semiconductor lasers Radiophys. Quant. Electr 2004 857 865
,[33] Model for passive mode-locking in semiconductor lasers Phys. Rev. A 2005 033808
,[34] Bifurcation analysis of laser autosolitons Quantum Electr 1997 949 952
, , ,[35] Analysis of the stability of laser solitons Quantum Electr 1998 55 57
, , ,[36] Delay differential equations for mode-locked semiconductor lasers Opt. Lett 2004 1221 1223
, ,[37] Numerical study of dynamical regimes in a monolithic passively mode-locked semiconductor laser IEEE J. Quantum Electr 2009 462 468
, ,[38] Delay differential models in multimode laser dynamics: taking chromatic dispersion into account Proc. SPIE 2016
, ,[39] A multiple time scale approach to the stability of external cavity modes in the Lang-Kobayashi system using the limit of large delay SIAM J. Appl. Dyn. Syst 2010 519 535
,[40] Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media Sov. Phys. JETP 1972 62 69
,Cité par Sources :