Voir la notice de l'article provenant de la source EDP Sciences
M.E. Semenov 1, 2, 3, 4 ; Andrey M. Solovyov 1 ; Peter A. Meleshenko 1, 5 ; Olga O. Reshetova 1
@article{MMNP_2020_15_a52, author = {M.E. Semenov and Andrey M. Solovyov and Peter A. Meleshenko and Olga O. Reshetova}, title = {Efficiency of hysteretic damper in oscillating systems}, journal = {Mathematical modelling of natural phenomena}, eid = {43}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2019053}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019053/} }
TY - JOUR AU - M.E. Semenov AU - Andrey M. Solovyov AU - Peter A. Meleshenko AU - Olga O. Reshetova TI - Efficiency of hysteretic damper in oscillating systems JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019053/ DO - 10.1051/mmnp/2019053 LA - en ID - MMNP_2020_15_a52 ER -
%0 Journal Article %A M.E. Semenov %A Andrey M. Solovyov %A Peter A. Meleshenko %A Olga O. Reshetova %T Efficiency of hysteretic damper in oscillating systems %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019053/ %R 10.1051/mmnp/2019053 %G en %F MMNP_2020_15_a52
M.E. Semenov; Andrey M. Solovyov; Peter A. Meleshenko; Olga O. Reshetova. Efficiency of hysteretic damper in oscillating systems. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 43. doi : 10.1051/mmnp/2019053. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019053/
[1] V.I. Babitsky and V.L. Krupenin, Vibration of Strongly Nonlinear Discontinuous Systems. Springer, Berlin, Heidelberg (2001).
[2] Dynamics behaviour of an elastic non-ideal (NIS) portal frame, including fractional nonlinearities J. Phys: Conf. Ser. 2016 012004(1) 012004(12)
, , , , , , , ,[3] Vibration of the duffing oscillator: Effect of fractional damping Shock Vib 2007 29 36
, ,[4] On lugre friction model to mitigate nonideal vibrations J. Comput. Nonlinear Dyn 2009 034503(1) 034503(5)
, , ,[5] On the destabilizing effect of non-linear damping in non-conservative systems with follower forces Int. J. Non-Linear Mech 1970 341 358
[6] A survey on hysteresis modeling, identification and control Mech. Syst. Signal Process 2014 209 233
, ,[7] M.A. Krasnosel’skii and A.V. Pokrovskii, Systems with Hysteresis. Springer Verlag, Berlin-Heidelberg-New York-Paris-Tokyo (1989).
[8] Output frequency response function of nonlinear Volterra systems Automatica 2007 805 816
, , ,[9] M. Latour, Theoretical and Experimental Analysis of Dissipative Beam-to-Column Joints in Moment Resisting Steel Frames. Universal-Publishers (2011).
[10] Fractional derivative and time delay damper characteristics in Duffing-van der Pol oscillators Commun. Nonlinear Sci. Numer. Simul 2013 2900 2915
, ,[11] Analysis of the effects of nonlinear viscous damping on vibration isolator Nonlinear Dyn 2015 2325 2332
,[12] Hard loss of stability of Ziegler’s column with nonlinear damping Meccanica 2016 2647 2663
, ,[13] Nonlinear hysteretic damping effects on the post-critical behaviour of the visco-elastic Beck’beam Math. Mech. Solids 2016
,[14] A. Luongo and F. D’Annibale, Linear and nonlinear damping effects on the stability of the Ziegler column. Structural Nonlinear Dynamics and Diagnosis: Selected papers from CSNDD 2012 and CSNDD 2014. Edited by M. Belhaq. Springer International Publishing (2015) 335–352.
[15] Neural-network-based adaptive tracking control for a class of pure-feedback stochastic nonlinear systems with backlash-like hysteresis Neurocomputing 2014 501 508
, ,[16] On the displacement transmissibility of a base excited viscously damped nonlinearvibration isolator J. Vib. Acoust 2009 054502(1) 054502(7)
, ,[17] A.H. Nayfeh and D.T. Mook, Nonlinear oscillations. John Wiley Sons (2008).
[18] Study of the effects of cubic nonlinear damping on vibration isolationsusing harmonic balance method Int. J. Non-Linear Mech 2012 1073 1080
, , , ,[19] On geometric conditions for reduction of the Moreau sweeping process to the prandtl-ishlinskii operator Discr. Continu. Dyn. Syst. B 2018 3361
[20] Parametric identification of nonlinear hysteretic systems Nonlinear Dyn 2009 393 404
, , , ,[21] Use of prandtl-ishlinskii hysteresis operators for coulomb friction modeling with presliding J. Phys.: Conf. Ser 2017 012013
,[22] Bouc-wen model of hysteretic damping Proc. Eng 2017 549 555
, , ,[23] Elastic inverted pendulum with backlash in suspension: stabilization problem Nonlinear Dyn 2015 677 688
, ,[24] M.E. Semenov, P.A. Meleshenko, A.M. Solovyov and A.M. Semenov, Hysteretic nonlinearity in inverted pendulum problem. In Structural Nonlinear Dynamics and Diagnosis: Selected papers from CSNDD 2012 and CSNDD 2014, edited by M. Belhaq. Springer International Publishing (2015) 463–506.
[25] Continuous hysteresis model using duffing-like equation Nonlinear Dyn 2015 1039 1049
, ,[26] Statements on chaos control designs, including a fractional order dynamical system, applied to a “MEMS” comb-drive actuator Nonlinear Dyn 2012 1837 1857
, , , ,[27] Nonlinear vibrations of fractionally damped systems Nonlinear Dyn 1998 321 336
,[28] R. Richards, Comparison of linear, nonlinear, hysteretic, and probabilistic mr damper models. Master’s thesis, Faculty of the Virginia Polytechnic Institute and State University (2007).
[29] Experiments and numerical results on non-linear vibrations of an impacting hertzian contact. part 1: harmonic excitation J. Sound Vib. 2003 289 307
,[30] Tuned mass damper with fractional derivative damping Eng. Struct 2006 1774 1779
[31] Chaotic vibrations of the duffing system with fractional damping Chaos 2014 013107(1) 013107(6)
, , ,[32] M.E. Semenov, A.M. Solovyov, P.A. Meleshenko and J.M. Balthazar, Nonlinear damping: From viscous to hysteretic dampers. In Recent Trends in Applied Nonlinear Mechanics and Physics, edited by M. Belhaq. Springer International Publishing (2018) 259–275.
Cité par Sources :