Efficiency of hysteretic damper in oscillating systems
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 43.

Voir la notice de l'article provenant de la source EDP Sciences

This paper is dedicated to comparative analysis of nonlinear damping in the oscillating systems. More specifically, we present the particular results for linear and nonlinear viscous dampers, fractional damper, as well as for the hysteretic damper in linear and nonlinear (Duffing-like) oscillating systems. We consider a constructive mathematical model of the damper with hysteretic properties on the basis of the Ishlinskii-Prandtl model. Numerical results for the observable characteristics, such as the force transmission function and the “force-displacement” transmission function are obtained and analyzed for both cases of the periodic affection, as well as for the impulse affection (in the form of δ-function). A comparison of an efficiency (in terms of the corresponding transmission functions) of the nonlinear viscous damper and the hysteretic damper is also presented and discussed.
DOI : 10.1051/mmnp/2019053

M.E. Semenov 1, 2, 3, 4 ; Andrey M. Solovyov 1 ; Peter A. Meleshenko 1, 5 ; Olga O. Reshetova 1

1 Voronezh State University, Universitetskaya sq. 1, 394018, Voronezh, Russia
2 Geophysical Survey of Russia Academy of Science, Lenina av. 189, 249035 Obninsk, Russia
3 Voronezh State Technical University, XX-letiya Oktyabrya st. 84, 394006 Voronezh, Russia
4 Zhukovsky-Gagarin Air Force Academy, Starykh Bolshevikov st. 54 “A”, 394064 Voronezh, Russia
5 Target Search Lab of Groundbreaking Radio Communication Technologies of Advanced Research Foundation, Plekhanovskaya st. 14, 394018, Voronezh, Russia
@article{MMNP_2020_15_a52,
     author = {M.E. Semenov and Andrey M. Solovyov and Peter A. Meleshenko and Olga O. Reshetova},
     title = {Efficiency of hysteretic damper in oscillating systems},
     journal = {Mathematical modelling of natural phenomena},
     eid = {43},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2019053},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019053/}
}
TY  - JOUR
AU  - M.E. Semenov
AU  - Andrey M. Solovyov
AU  - Peter A. Meleshenko
AU  - Olga O. Reshetova
TI  - Efficiency of hysteretic damper in oscillating systems
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019053/
DO  - 10.1051/mmnp/2019053
LA  - en
ID  - MMNP_2020_15_a52
ER  - 
%0 Journal Article
%A M.E. Semenov
%A Andrey M. Solovyov
%A Peter A. Meleshenko
%A Olga O. Reshetova
%T Efficiency of hysteretic damper in oscillating systems
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019053/
%R 10.1051/mmnp/2019053
%G en
%F MMNP_2020_15_a52
M.E. Semenov; Andrey M. Solovyov; Peter A. Meleshenko; Olga O. Reshetova. Efficiency of hysteretic damper in oscillating systems. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 43. doi : 10.1051/mmnp/2019053. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019053/

[1] V.I. Babitsky and V.L. Krupenin, Vibration of Strongly Nonlinear Discontinuous Systems. Springer, Berlin, Heidelberg (2001).

[2] J.M. Balthazar, R.M.L.R.F. Brasil, J.L.P Felix, A.M. Tusset, V. Picirillo, I. Iluik, R.T. Rocha, A. Nabarrete, C. Oliveira Dynamics behaviour of an elastic non-ideal (NIS) portal frame, including fractional nonlinearities J. Phys: Conf. Ser. 2016 012004(1) 012004(12)

[3] M. Borowiec, G. Litak, A. Syta Vibration of the duffing oscillator: Effect of fractional damping Shock Vib 2007 29 36

[4] J.L.P Felix, J.M. Balthazar, R.M.L.R.F. Brasil, B.R. Pontes On lugre friction model to mitigate nonideal vibrations J. Comput. Nonlinear Dyn 2009 034503(1) 034503(5)

[5] P. Hagedorn On the destabilizing effect of non-linear damping in non-conservative systems with follower forces Int. J. Non-Linear Mech 1970 341 358

[6] V. Hassani, T. Tjahjowidodo, T. Nho Do A survey on hysteresis modeling, identification and control Mech. Syst. Signal Process 2014 209 233

[7] M.A. Krasnosel’skii and A.V. Pokrovskii, Systems with Hysteresis. Springer Verlag, Berlin-Heidelberg-New York-Paris-Tokyo (1989).

[8] Z.Q. Lang, S.A. Billings, R. Yue, J. Li Output frequency response function of nonlinear Volterra systems Automatica 2007 805 816

[9] M. Latour, Theoretical and Experimental Analysis of Dissipative Beam-to-Column Joints in Moment Resisting Steel Frames. Universal-Publishers (2011).

[10] A.Y.T. Leung, Z. Guo, H.X. Yang Fractional derivative and time delay damper characteristics in Duffing-van der Pol oscillators Commun. Nonlinear Sci. Numer. Simul 2013 2900 2915

[11] Q. Lv, Z. Yao Analysis of the effects of nonlinear viscous damping on vibration isolator Nonlinear Dyn 2015 2325 2332

[12] A. Luongo, F. D’Annibale, M. Ferretti Hard loss of stability of Ziegler’s column with nonlinear damping Meccanica 2016 2647 2663

[13] A. Luongo, F. D’Annibale Nonlinear hysteretic damping effects on the post-critical behaviour of the visco-elastic Beck’beam Math. Mech. Solids 2016

[14] A. Luongo and F. D’Annibale, Linear and nonlinear damping effects on the stability of the Ziegler column. Structural Nonlinear Dynamics and Diagnosis: Selected papers from CSNDD 2012 and CSNDD 2014. Edited by M. Belhaq. Springer International Publishing (2015) 335–352.

[15] Q. Ma, G. Cui, T. Jiao Neural-network-based adaptive tracking control for a class of pure-feedback stochastic nonlinear systems with backlash-like hysteresis Neurocomputing 2014 501 508

[16] Z. Milovanovic, I. Kovacic, M.J. Brennan On the displacement transmissibility of a base excited viscously damped nonlinearvibration isolator J. Vib. Acoust 2009 054502(1) 054502(7)

[17] A.H. Nayfeh and D.T. Mook, Nonlinear oscillations. John Wiley Sons (2008).

[18] Z.K. Peng, G. Meng, Z.Q Lang, W.M. Zhang, F.L. Chu Study of the effects of cubic nonlinear damping on vibration isolationsusing harmonic balance method Int. J. Non-Linear Mech 2012 1073 1080

[19] D. Rachinskii On geometric conditions for reduction of the Moreau sweeping process to the prandtl-ishlinskii operator Discr. Continu. Dyn. Syst. B 2018 3361

[20] Y. Rochdi, F. Giri, F. Ikhouane, F.Z. Chaoui, J. Rodellar Parametric identification of nonlinear hysteretic systems Nonlinear Dyn 2009 393 404

[21] M. Ruderman, D Rachinskii Use of prandtl-ishlinskii hysteresis operators for coulomb friction modeling with presliding J. Phys.: Conf. Ser 2017 012013

[22] M.E. Semenov, A.M. Solovyov, P.A. Meleshenko, A.I. Barsukov Bouc-wen model of hysteretic damping Proc. Eng 2017 549 555

[23] M.E. Semenov, A.M. Solovyov, P.A. Meleshenko Elastic inverted pendulum with backlash in suspension: stabilization problem Nonlinear Dyn 2015 677 688

[24] M.E. Semenov, P.A. Meleshenko, A.M. Solovyov and A.M. Semenov, Hysteretic nonlinearity in inverted pendulum problem. In Structural Nonlinear Dynamics and Diagnosis: Selected papers from CSNDD 2012 and CSNDD 2014, edited by M. Belhaq. Springer International Publishing (2015) 463–506.

[25] J.-Y. Tu, P.-Y. Lin, T.-Y. Cheng Continuous hysteresis model using duffing-like equation Nonlinear Dyn 2015 1039 1049

[26] A.M. Tusset, J.M. Balthazar, D.G. Bassinello, B.R. Pontes, J.L.P. Felix Statements on chaos control designs, including a fractional order dynamical system, applied to a “MEMS” comb-drive actuator Nonlinear Dyn 2012 1837 1857

[27] J. Padovan, J. T. Sawicki Nonlinear vibrations of fractionally damped systems Nonlinear Dyn 1998 321 336

[28] R. Richards, Comparison of linear, nonlinear, hysteretic, and probabilistic mr damper models. Master’s thesis, Faculty of the Virginia Polytechnic Institute and State University (2007).

[29] E. Rigaud, J. Perret-Liaudet Experiments and numerical results on non-linear vibrations of an impacting hertzian contact. part 1: harmonic excitation J. Sound Vib. 2003 289 307

[30] F. Rüdinger Tuned mass damper with fractional derivative damping Eng. Struct 2006 1774 1779

[31] A. Syta, G. Litak, S. Lenci, M. Scheffler Chaotic vibrations of the duffing system with fractional damping Chaos 2014 013107(1) 013107(6)

[32] M.E. Semenov, A.M. Solovyov, P.A. Meleshenko and J.M. Balthazar, Nonlinear damping: From viscous to hysteretic dampers. In Recent Trends in Applied Nonlinear Mechanics and Physics, edited by M. Belhaq. Springer International Publishing (2018) 259–275.

Cité par Sources :