Fatigue and phase transition in an oscillating elastoplastic beam
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 41.

Voir la notice de l'article provenant de la source EDP Sciences

We study a model of fatigue accumulation in an oscillating elastoplastic beam under the hypothesis that the material can partially recover by the effect of melting. The model is based on the idea that the fatigue accumulation is proportional to the dissipated energy. We prove that the system consisting of the momentum and energy balance equations, an evolution equation for the fatigue rate, and a differential inclusion for the phase dynamics admits a unique strong solution.
DOI : 10.1051/mmnp/2019052

Michela Eleuteri 1 ; Chiara Gavioli 1 ; Jana Kopfová 2

1 University of Modena and Reggio Emilia, Dipartimento di Scienze Fisiche, Informatiche e Matematiche, via Campi 213/b, 41125 Modena, Italy.
2 Mathematical Institute of the Silesian University, Na Rybníčku 1, 746 01 Opava, Czech Republic.
@article{MMNP_2020_15_a51,
     author = {Michela Eleuteri and Chiara Gavioli and Jana Kopfov\'a},
     title = {Fatigue and phase transition in an oscillating elastoplastic beam},
     journal = {Mathematical modelling of natural phenomena},
     eid = {41},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2019052},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019052/}
}
TY  - JOUR
AU  - Michela Eleuteri
AU  - Chiara Gavioli
AU  - Jana Kopfová
TI  - Fatigue and phase transition in an oscillating elastoplastic beam
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019052/
DO  - 10.1051/mmnp/2019052
LA  - en
ID  - MMNP_2020_15_a51
ER  - 
%0 Journal Article
%A Michela Eleuteri
%A Chiara Gavioli
%A Jana Kopfová
%T Fatigue and phase transition in an oscillating elastoplastic beam
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019052/
%R 10.1051/mmnp/2019052
%G en
%F MMNP_2020_15_a51
Michela Eleuteri; Chiara Gavioli; Jana Kopfová. Fatigue and phase transition in an oscillating elastoplastic beam. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 41. doi : 10.1051/mmnp/2019052. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019052/

[1] E. Bonetti, G. Bonfanti Well-posedness results for a model of damage in thermoviscoelastic materials Ann. Inst. Henri Poincaré 2008 1187 1208

[2] E. Bonetti, G. Schimperna Local existence for Frémond’s model of damage in elastic materials Continuum Mech. Therm 2004 319 335

[3] E. Bonetti, G. Schimperna, A. Segatti On a doubly nonlinear model for the evolution of damaging in viscoelastic materials J. Diff. Equ 2005 91 116

[4] S. Bosia, M. Eleuteri, J. Kopfová, P. Krejčí Fatigue and phase in a oscillating plate Physica B 2014 1 3

[5] M. Brokate, C. Carstensen, J. Valdman A quasi-static boundary value problem in multi-surface elastoplasticity. I. Analysis. Math. Methods Appl. Sci. 2004 1697 1710

[6] M. Brokate, K. Dreßler, P. Krejčí Rainflow counting and energy dissipation for hysteresis models in elastoplasticity Euro. J. Mech. A/Solids 1996 705 735

[7] M. Brokate, A.M. Khludnev Existence of solutions in the Prandtl-Reuss theory of elastoplastic plates Adv. Math. Sci. Appl 2000 399 415

[8] E. Davoli, T. Roubíček, U. Stefanelli Dynamic perfect plasticity and damage in viscoelastic solids Z. Angew. Math. Mech 2019 1 27

[9] M. Eleuteri, J. Kopfová, P. Krejčí A thermodynamic model for material fatigue under cyclic loading Physica B 2012 1415 1416

[10] M. Eleuteri, J. Kopfová, P. Krejčí Fatigue accumulation in an oscillating plate Discrete Cont. Dynam. Syst. Ser. S 2013 909 923

[11] M. Eleuteri, J. Kopfová, P. Krejčí Non-isothermal cyclic fatigue in an oscillating elastoplastic beam Comm. Pure Appl. Anal 2013 2973 2996

[12] M. Eleuteri, J. Kopfová, P. Krejčí Fatigue accumulation in a thermo-visco-elastoplastic plate Discrete Cont. Dyn. Syst., Ser. B 2014 2091 2109

[13] M. Eleuteri, J. Kopfová, P. Krejčí A new phase field model for material fatigue in oscillating elastoplastic beam Discrete Cont. Dyn. Syst., Ser. A 2015 2465 2495

[14] M. Eleuteri, J. Kopfová On a new model for fatigue and phase transition in an oscillating elastoplastic plate. J. Diff. Equ. 2018 1839 1874

[15] A. Flatten, Lokale und nicht-lokale Modellierung und Simulation thermomechanischer Lokalisierung mit Schädigung für metallische Werkstoffe unter Hochgeschwindigkeitsbeanspruchungen. BAM-Dissertationsreihe, Berlin (2008).

[16] M. Frémond, A. Visintin Dissipation dans le changement de phase. Surfusion. Changement de phase irréversible. C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 1985 1265 1268

[17] G. Friesecke, R.D. James, S. Müller A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence Arch. Ration. Mech. Anal 2006 183 236

[18] D. Knees, R. Rossi, C. Zanini A vanishing viscosity approach to a rate-independent damage model Math. Models Methods Appl. Sci. (M3AS) 2013 565 616

[19] P. Krejčí Hysteresis, Convexity and Dissipation in Hyperbolic Equations Gakuto Intern. Ser. Math. Sci. Appl 1996

[20] P. Krejčí, J. Sprekels Elastic-ideally plastic beams and Prandtl-Ishlinskii hysteresis operators Math. Methods Appl. Sci 2007 2371 2393

[21] M. Kuczma, P. Litewka, J. Rakowski, J.R. Whiteman A variational inequality approach to an elastoplastic plate-foundation system Found Civil Environ. Eng. 2004 31 48

[22] M. Liero and A. Mielke, An evolutionary elastoplastic plate model derived via Gamma convergence. WIAS Preprint No. 1583 (2010).

[23] M. Liero and T. Roche, Rigorous derivation of a plate theory in linear elastoplasticity via Gamma convergence. WIAS Preprint No. 1636 (2011).

[24] O. Millet, A. Cimetiere, A. Hamdouni An asymptotic elastic-plastic plate model for moderate displacements and strong strain hardening Eur. J. Mech. A Solids 2003 369 384

[25] D. Percivale Perfectly plastic plates: a variational definition J. Reine Angew. Math 1990 39 50

[26] A. Mielke, T. Roubíček Rate-independent damage processes in nonlinear inelasticity Math. Models Meth. Appl. Sci. (M3AS) 2006 177 209

[27] E. Rocca, R. Rossi A degenerating PDE system for phase transitions and damage Math. Models Methods Appl. Sci. (M3AS) 2014 1265 1341

[28] T. Roubíček, U. Stefanelli Finite thermoelastoplasticity and creep under small elastic strains Math. Mech. Solids 2019 1161 1181

[29] T. Roubíček, J. Valdman Stress-driven solution to rate-independent elasto-plasticity with damage at small strains and its computer implementation. Math. Mech. of Solids 2017 1267 1287

[30] M. Thomas, A. Mielke Damage of nonlinearly elastic materials at small strain: existence and regularity results Z. Angew. Math. Mech 2010 88 112

[31] S. Tsutsumi, R. Fincato Cyclic elasticity model for fatigue with softening behaviour below macroscopic yielding Mater. Des 2019 107503

[32] A. Visintin, Vol. 28 of Models of phase transitions. Progress in Nonlinear Differential Equations and Applications. Birkhäuser, Boston (1996).

[33] S-Y. Wang, L. Zhan, Z-L. Wang, Z.-N. Yin, H. Xiao A direct approach towards simulating cyclic and non-cyclic fatigue failure of metals Acta Mech. 2017 4325 4339

Cité par Sources :