Preisach based storage devices and global optimizers
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 20.

Voir la notice de l'article provenant de la source EDP Sciences

The Preisach model of hysteresis admits simple device realizations. It is suggested in the paper that these realizations can be utilized as unique data storage devices as well as analog global optimizers.
DOI : 10.1051/mmnp/2019051

Isaak D. Mayergoyz 1 ; Can E. Korman 2

1 Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA
2 Department of Electrical and Computer Engineering, George Washington University, Washington, DC 20052, USA
@article{MMNP_2020_15_a48,
     author = {Isaak D. Mayergoyz and Can E. Korman},
     title = {Preisach based storage devices and global optimizers},
     journal = {Mathematical modelling of natural phenomena},
     eid = {20},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2019051},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019051/}
}
TY  - JOUR
AU  - Isaak D. Mayergoyz
AU  - Can E. Korman
TI  - Preisach based storage devices and global optimizers
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019051/
DO  - 10.1051/mmnp/2019051
LA  - en
ID  - MMNP_2020_15_a48
ER  - 
%0 Journal Article
%A Isaak D. Mayergoyz
%A Can E. Korman
%T Preisach based storage devices and global optimizers
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019051/
%R 10.1051/mmnp/2019051
%G en
%F MMNP_2020_15_a48
Isaak D. Mayergoyz; Can E. Korman. Preisach based storage devices and global optimizers. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 20. doi : 10.1051/mmnp/2019051. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019051/

[1] V.R. Almeida, M. Lipson Optical bistability on a silicon chip Opt. Lett 2004 2387 2389

[2] M. Brokate and J. Sprekels, Hysteresis and Phase Transitions. Springer (1986).

[3] I. Daubechies, Ten Lectures on Wavelets. SIAM (1992).

[4] I. Filanovsky, H. Baltes CMOS Schmitt trigger design IEEE Trans. Circ. Syst. 1994 46 49

[5] A. Friedman, Foundations of Modern Analysis. Holt, Rinehart Winston of Canada Ltd. (1970).

[6] V. Gergel, V. Grishagin, R. Israfilov Local tuning inNested scheme of global optimization Proc. Comput. Sci 2015 865 874

[7] V. Grishagin, R. Israfilov, Y. Sergeyev Comparative efficiency of dimensionality reduction schemes in global optimization AIP Conf. Proc 2016 060011

[8] R. Horst, P.M. Pardalos and N.V. Thoai, “ Introduction to Global Optimization (Nonconvex Optimization and Its Applications), 2nd Edition,” Kluwer Academic Publishers, 2000.

[9] M. Krasnosel’skii, A. Pokrovskii, Systems with Hysteresis. Springer (1989).

[10] M. Locatelli and F. Schoen, “ Global Optimization: Theory, Algorithms, and Applications,” MOS-SIAM Series on Optimization, October 2013.

[11] I. Mayergoyz, Mathematical Models of Hysteresis and Their Applications. Academic Press (2003) (an imprint of Elsevier).

[12] K. Madikeri, A. Srinivasulu, C. Shaker Two new CMOS Schmitt Trigger circuits based on current sink and pseudo logic structures Int. J. Comput. Appl 2013 1 24

[13] P.M. Pardalos and H.E. Romeijn (Eds.), Vol. 2 of Handbook of Global Optimization. Kluwer Academic Publishers (2002).

[14] J. von Neumann, Mathermatical Foundation of Quantum Mechanics. Princeton University Press (1996).

[15] A. Visintin, Differential Models of Hysteresis. Springer (1993).

[16] C. Shin, X. Sun, T.K. Liu Study of random-dopant-fluctuation (RDF) effects for the trigate bulk MOSFET IEEE Trans. Electr. Dev 2009 1538 1542

[17] X. Zhang, D. Connelly, P. Zheng Analysis of 7/8-nm bulk-Si FinFET technologies for 6T-SRAM scaling IEEE Trans. Electr. Dev 2016 1502 1507

Cité par Sources :