On the shape of invading population in anisotropic environments
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 4.

Voir la notice de l'article provenant de la source EDP Sciences

We analyze the properties of population spreading in environments with spatial anisotropy within the frames of a lattice model of asymmetric (biased) random walkers. The expressions for the universal shape characteristics of the instantaneous configuration of population, such as asphericity A and prolateness S are found analytically and proved to be dependent only on the asymmetric transition probabilities in different directions. The model under consideration is shown to capture, in particular, the peculiarities of invasion in presence of an array of oriented tubes (fibers) in the environment.
DOI : 10.1051/mmnp/2019046

Viktoria Blavatska 1

1 Department for Computer Simulations of Many-Particle Systems, Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, Lviv 79011, Ukraine.
@article{MMNP_2020_15_a28,
     author = {Viktoria Blavatska},
     title = {On the shape of invading population in anisotropic environments},
     journal = {Mathematical modelling of natural phenomena},
     eid = {4},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2019046},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019046/}
}
TY  - JOUR
AU  - Viktoria Blavatska
TI  - On the shape of invading population in anisotropic environments
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019046/
DO  - 10.1051/mmnp/2019046
LA  - en
ID  - MMNP_2020_15_a28
ER  - 
%0 Journal Article
%A Viktoria Blavatska
%T On the shape of invading population in anisotropic environments
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019046/
%R 10.1051/mmnp/2019046
%G en
%F MMNP_2020_15_a28
Viktoria Blavatska. On the shape of invading population in anisotropic environments. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 4. doi : 10.1051/mmnp/2019046. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019046/

[1] T. Alarcón, H.M. Byre, P.K. Main A cellular automaton model for tumour growth in inhomogeneous environment J. Theor. Biol 2003 257 274

[2] W. Alt Biased random walk model for chemotaxis and related diffusion approximation J. Math. Biol 1980 147 177

[3] A.R.A. Anderson, M.A.J. Chaplain, E.L. Newman, R.J.C. Steele, A.M. Thompson Mathematical modelling of tumour invasion and metastasis J. Theor. Med 2000 129 154

[4] P.R. Armsworth, L. Bode The consequences of non-passive advection and directed motion for population dynamics Proc. R. Soc. Lond. A 1999 4045 60

[5] P.R. Armsworth, J.E. Roughgarden The impact of directed versus random movement on population dynamics and biodiversity patterns Am. Nat 2005 449 465

[6] J.A. Aronovitz, D.R. Nelson Universal features of polymer shapes J. Physique 1986 1445 1456

[7] F. Belgacem, C. Cosner The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environments Can. Appl. Math. Quar 1995 379 397

[8] E. Ben-Jacob, H. Levine The artistry of nature Nature 2001 985 986

[9] H.C. Berg Motile Behavior of Bacteria Phys. Today 2000 24 29

[10] S. Bianchi, L. Biferale, A. Celani, M. Cencini On the evolution of particle-puffs in turbulence Eur. J. Mech. B Fluids 2016 324 329

[11] M. Bishop, C.J. Saltiel Polymer shapes in two, four, and five dimensions J. Chem. Phys 1988 3976 3980

[12] R. Brout Statistical mechanical theory of a random ferromagnetic system Phys. Rev 1959 824 835

[13] R.S. Cantrell, C. Cosner, Y. Lou Movement toward better environments and the evolution of rapid diffusion Math. Biosci 2006 199 214

[14] F.A.C.C. Chalub, P.A. Markowich, B. Perthame, C. Schmeiser Kinetics models for chemotaxis and their drift-diffusion limits Monatsh. Math 2014 123 141

[15] A. Chauviere, T. Hillen, L. Preziosi Modeling cell movement in anisotropic and heterogeneous network tissues Netw. Heterogen. Media 2007 333 357

[16] E.A. Codling, M.J. Plank, S. Benhamou Random walk models in biology J. R. Soc. Interface 2008 813 834

[17] E. Cristiani, P. Frasca, B. Piccoli Effects of anisotropic interactions on the structure of animal groups J. Math. Biol 2011 569 588

[18] S. Dewhirst, F. Lutscher Dispersal in heterogeneous habitats: thresholds, spatial scales, and approximate rates of spread Ecology 2009 1338 1345

[19] R.B. Dickinson A generalized transport model for biased cell migration in an anisotropic environment J. Math. Biol 2000 97 135

[20] R.B. Dickinson, S. Guido, R.T. Tranquillo Biased cell migration of fibroblasts exhibiting contact guidance in oriented collagen gels Ann. Biomed. Eng 1994 342 356

[21] H.W. Diehl, E. Eisenriegler Universal shape ratios for open and closed random walks: exact results for all d J. Phys. A: Math. Gen 1989 L87 L91

[22] Y. Dolak, C. Schmeiser Kinetic models for chemotaxis: Hydrodynamic limits and spatiotemporal mechanics J. Math. Biol 2005 595 615

[23] C. Di Franco, E. Beccari, T. Santini, G. Pisaneschi, G. Tecce Colony shape as a genetic trait in the pattern-forming Bacillus mycoides BMC Microbiol 2002 1 15

[24] V.J. Emery Critical properties of many-component systems Phys. Rev. B 1975 239 247

[25] P. Friedl, K. Wolf Tumour-cell invasion and migration: diversity and escape mechanisms Nat. Rev 2003 362 374

[26] G. Gaspari, J. Rudnick, A Beldjenna The shapes of open and closed random walks: a l∕d expansion J. Phys. A: Math. Gen 1987 3393 3414

[27] N.A. Hill, D.P. Häder A biased random walk model for the trajectories of swimming micro-organisms J. Theor. Biol 1997 503 526

[28] T. Hillen M5 mesoscopic and macroscopic models for mesenchymal motion J. Math. Biol 2006 585 616

[29] T. Hillen and K.J. Painter, Transport and Anisotropic Diffusion Models for Movement in Oriented Habitat, in Dispersal, Individual Movement and Spatial Ecology. Vol 2071 of Lecture Notes in Mathematics. Springer, Berlin (2013) 177–222.

[30] R.W. Van Kirk, M.A. Lewis Integrodifference models for persistence in fragmented habitats Bull. Math. Biol 1997 107 137

[31] W. Kuhn Über die Gestalt fadenförmiger Moleküle in Lösungen Kolloid-Z. 1934 2 15

[32] D. Losic, M. Aw, A. Santos, K. Gulati, M. Bariana Titania nanotube arrays for local drug delivery: recent advances and perspectives Expert Opin. Drug Deliv 2015 103 127

[33] N.H. Mendelson Helical growth of Bacillus subtilis: a new model of cell growth Proc. Natl. Acad. Sci. USA 1976 1740 1744

[34] Z. Mokhtari Automated characterization and parameter-free classification of cell tracks based on local migration behavior PLoS One 2013 e80808

[35] T.J. Pedley, J.O. Kessler A new continuum model for suspensions of gyrotactic micro-organisms J. Fluid Mech 1990 155 182

[36] K.J. Painter Modelling cell migration strategies in the extracellular matrix J. Math. Biol 2009 511 543

[37] C.S. Patlack Random walk with persistence and external bias Bull. Math. Biophys 1953 311 338

[38] R. Rudner, O. Martsinkevich, W. Leung, E.D. Jarvis Classification and genetic characterization of pattern forming Bacilli Mol. Microbiol 1998 687 703

[39] J. Rudnick, G. Gaspari The aspherity of random walks J. Phys. A 1986 L191 L194

[40] B. Salhi, N. Mendelson Patterns of gene expression in Bacillus subtilis colonies J. Bacteriol. 1993 5000 5008

[41] M. Sarris Inammatory chemokines direct and restrict leukocyte migration within live tissues as glycan-bound gradients Curr. Biol 2012 2375 2382

[42] S.J. Sciutto Study of the shape of random walks J. Phys. A Math. Gen 1994 7015 7034

[43] J.A. Shapiro The use of Mudlac transposons as tools for vital staining to visualize clonal and non-clonal patterns of organization in bacterial growth on agar surfaces J. Gen. Microbiol 1984 1169 1181

[44] J.A. Shapiro Scanning electron microscope study of Pseudomonas putida colonies J. Bacteriol. 1985 1171 1181

[45] J.A. Shapiro The significance of bacterial colony patterns Bio Essays 1995 597 607

[46] M.F. Shlesinger and B. West, Random Walks and their Applications in the Physical and Biological Sciences. Vol. 109 of AIP Conference Proceedings. AIP, New York (1984).

[47] K. Šolc, W.H. Stockmayer Shape of a Random-Flight Chain J. Chem. Phys 1994 2756 2757

[48] K. Olc Shape of a Random Flight Chain J. Chem. Phys 1971 335 344

[49] R.V.V. Vincent, N.A. Hill Bioconvection in a suspension of phototactic algae J. Fluid Mech 1996 343 371

[50] Q. Wang Recent advances on smart TiO2 nanotubeplatforms for sustainable drug delivery applications Int. J. Nanomed 2017 151 165

[51] B.P. Yurk Homogenization analysis of invasion dynamics in heterogeneous landscapes with differential bias and motility J. Math. Biol 2017 27 54

[52] M. Weber Interstitial dendritic cell guidance by haptotactic chemokine gradients Science 2013 328 332

[53] G. Wei, X. Zhu Shapes and sizes of arbitrary random walks at O(1∕d3) II. Asphericity and prolateness parameters Physica A 1997 423 440

[54] A. Zakharchenko, N. Guz, A.M. Laradji, E. Katz, S. Minko Magnetic field remotely controlled selective biocatalysis Nat. Catal 2018 73 81

Cité par Sources :