Voir la notice de l'article provenant de la source EDP Sciences
Fethi Souna 1 ; Salih Djilali 2, 3 ; Fayssal Charif 4, 5
@article{MMNP_2020_15_a62, author = {Fethi Souna and Salih Djilali and Fayssal Charif}, title = {Mathematical analysis of a diffusive predator-prey model with herd behavior and prey escaping}, journal = {Mathematical modelling of natural phenomena}, eid = {23}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2019044}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019044/} }
TY - JOUR AU - Fethi Souna AU - Salih Djilali AU - Fayssal Charif TI - Mathematical analysis of a diffusive predator-prey model with herd behavior and prey escaping JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019044/ DO - 10.1051/mmnp/2019044 LA - en ID - MMNP_2020_15_a62 ER -
%0 Journal Article %A Fethi Souna %A Salih Djilali %A Fayssal Charif %T Mathematical analysis of a diffusive predator-prey model with herd behavior and prey escaping %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019044/ %R 10.1051/mmnp/2019044 %G en %F MMNP_2020_15_a62
Fethi Souna; Salih Djilali; Fayssal Charif. Mathematical analysis of a diffusive predator-prey model with herd behavior and prey escaping. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 23. doi : 10.1051/mmnp/2019044. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019044/
[1] Modeling herd behavior in population systems Nonlin. Anal. Real World Appl 2011 2319 2338
, ,[2] Stochastic delay Lotka-Volterra model J. Math. Anal. Appl 2004 364 380
,[3] Predator-prey dynamics with square root functional responses Nonlin. Anal. Real World Appl 2012 1837 1843
[4] J. Carr, Applications of Center Manifold Theory. SpringerVerlag, New York (1981).
[5] S.N. Chow and J.K. Hale, Methods of Bifurcation Theory. Springer, New York (1982).
[6] Ecoepidemics with infected prey in herd defense: the harmless and toxic cases Int. J. Comput. Math 2016 108 127
,[7] Herd behavior in a predator-prey model with spatial diffusion: bifurcation analysis and Turing instability J. Appl. Math. Comp 2017 125 149
[8] Impact of prey herd shape on the predator-prey interaction Chaos Solitons Fractals 2019 139 148
[9] Effect of herd shape in a diffusive predator-prey model with time delay J. Appl. Anal. Comput 2019 638 654
[10] Spatiotemporal patterns in a diffusive predator-prey model with prey social behavior Acta Appl. Math 2019
,[11] A Heroin epidemic model: very general non linear incidence, treat-age, and global stability Acta Appl. Math 2017 171 194
, ,[12] B. Hassard, N. Kazarinoff and Y. Wan, Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981).
[13] Stability analysis of a prey-predator model with Holling type III response function incorporating a prey refuge Appl. Math. Comput 2006 672 683
, ,[14] Global properties for virus dynamics model with Beddington-DeAngelis functional response Appl. Math. Lett 2009 1690 1693
, ,[15] Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge J. Differ. Equ 2006 534 550
,[16] Global qualitative analysis of a ratio-dependent predator-prey system J. Math. Biol 1998 389 406
,[17] A diffusive Holling-Tanner prey-predator model with free boundary Int. J. Biomath 2018 1850066
[18] A delay-induced predator-prey model with Holling type interaction functional response and habitat complexity Nonlin. Dyn 2018 1519 1544
,[19] Shape effects on herd behavior in ecological interacting population models Math. Comput. Simul 2017 40 55
,[20] Steady state in a cross-diffusion predator-prey model with the Beddington-DeAngelis functional response Nonlinear Anal. Real World Appl 2019 401 413
,[21] The impact of water level fluctuations on a delayed prey-predator model Nonlin. Anal. Real World Appl 2015 170 184
, ,[22] Bifurcation analysis in a predator-prey system with a functional response increasing in both predator and prey densities Nonlin. Dyn 2018 1639 1656
, ,[23] Positive steady states of a diffusive predator-prey system with modified Holling-Tanner functional response Nonlin. Anal. Real World Appl 2010 3711 3721
, ,[24] Stability, steady-state bifurcation, and Turing patterns in predator-prey model with herd behavior and prey-taxis Stud. Appl. Math 2017 371 404
,[25] Spatiotemporal dynamics in a diffusive ratio-dependent predator-prey model near a Hopf-Turing bifurcation point Comput. Math. Appl 2014 1978 1997
,[26] Bifurcation analysis and Turing instability in a diffusive predator prey model with herd behavior and hyperbolic mortality Chaos Solit. Frac 2015 303 314
,[27] Turing-hopf bifurcation analysis of a predator-prey model with herd behavior and cross-diffusion Nonlinear Dyn 2016 73 89
,[28] A minimal model for ecoepidemics with group defense J. Biol. Syst 2011 763 85
[29] Modeling herd behavior in population systems Nonlin. Anal. Real World Appl 2013 2319 38
[30] Spatiotemporal behavior of a prey-predator system with a group defense for prey Ecol. Complex 2013 37 47
,[31] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer-Verlag, New York (1991).
[32] Bifurcation analysis of a diffusive predator-prey system with a herd behavior and quadratic mortality Math. Meth. Appl. Sci 2015 2994 3006
,[33] Global dynamics of a predator-prey model with defense mechanism for prey Appl. Math. Lett 2016 42 48
, ,[34] A diffusive predator-prey system with additional food and intra-specific competition among predators Int. J. Biomath 2018 1850060
, ,[35] Analysis on existence of bifurcation solutions for a predator-prey model with herd behavior Appl. Math. Model 2018 433 446
[36] Spatial dynamics in a predator-prey model with herd behavior Chaos 2013 033102
, ,[37] Hopf bifurcation and Turing instability in spatial homogeneous and inhomogeneous predator-prey models Appl. Math. Model 2011 1883 1893
, ,[38] Dynamics and patterns of a diffusive prey-predator system with a group defence for prey Disc. Dyn. Nat. Soc 2018 6519696
,Cité par Sources :