Multidimensional play operators with arbitrary BV inputs
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 13.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper we provide an integral variational formulation for a vector play operator where the inputs are allowed to be arbitrary functions with (pointwise) bounded variation, not necessarily left or right continuous. We prove that this problem admits a unique solution, and we show that in the left continuous and right continuous cases it reduces to the well known existing formulations.
DOI : 10.1051/mmnp/2019042

Vincenzo Recupero 1

1 Dipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
@article{MMNP_2020_15_a44,
     author = {Vincenzo Recupero},
     title = {Multidimensional play operators with arbitrary {BV} inputs},
     journal = {Mathematical modelling of natural phenomena},
     eid = {13},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2019042},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019042/}
}
TY  - JOUR
AU  - Vincenzo Recupero
TI  - Multidimensional play operators with arbitrary BV inputs
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019042/
DO  - 10.1051/mmnp/2019042
LA  - en
ID  - MMNP_2020_15_a44
ER  - 
%0 Journal Article
%A Vincenzo Recupero
%T Multidimensional play operators with arbitrary BV inputs
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019042/
%R 10.1051/mmnp/2019042
%G en
%F MMNP_2020_15_a44
Vincenzo Recupero. Multidimensional play operators with arbitrary BV inputs. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 13. doi : 10.1051/mmnp/2019042. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019042/

[1] S. Adly, T. Haddad, L. Thibault Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities Math. Program. Ser. B 2014 5 47

[2] R. Bouc Modèle mathématique d’hystérésis Acustica 1971 16 25

[3] H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematical Studies, Vol. 5, North-Holland Publishing Company, Amsterdam (1973).

[4] M. Brokate and J. Sprekels, Hysteresis and Phase Transitions. Vol. 121 of Applied Mathematical Sciences. Springer-Verlag, New York (1996).

[5] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions. Springer, Berlin - Heidelberg - New York (1977).

[6] N. Dinculeanu, Vector Measures, International Series of Monographs in Pure and Applied Mathematics, Vol. 95, Pergamon Press, Berlin (1967).

[7] H. Federer, Geometric Measure Theory. Springer-Verlag, Berlin-Heidelberg (1969).

[8] O. Klein Representation of hysteresis operators acting on vector-valued monotaffine functions Adv. Math. Sci. Appl 2012 471 500

[9] O. Klein A representation result for hysteresis operators with vector valued inputs and its application to models for magnetic materials Physica B 2014 113 115

[10] O. Klein On the representation of hysteresis operators acting on vector-valued, left-continuous and piecewise monotaffine and continuous functions Discrete Contin. Dyn. Syst 2015 2591 2614

[11] O. Klein A representation result for rate-independent systems Physica B 2016 81 83

[12] J. Kopfová, V. Recupero BV-norm continuity of sweeping processes driven by a set with constant shape J. Differ. Equ 2016 5875 5899

[13] M.A. Krasnosel’skiǐ and A.V. Pokrovskiǐ, Systems with Hysteresis. Springer-Verlag, Berlin Heidelberg (1989).

[14] P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Vol. 8 of Gakuto International Series Mathematical Sciences and Applications. Gakkōtosho, Tokyo (1997).

[15] P. Krejčí, P. Laurençot Generalized variational inequalities J. Convex Anal 2002 159 183

[16] P. Krejčí, V. Recupero Comparing BV solutions of rate independent processes J. Convex Anal 2014 121 146

[17] P. Krejčí, V. Recupero BV solutions of rate independent differential inclusions Math. Bohem 2014 607 619

[18] S. Lang, Real and Functional Analysis - Third Edition. Springer Verlag, New York (1993).

[19] A. Mielke and T. Roubíček, Rate Independent Systems, Theory and Applications. Springer (2015).

[20] M.D.P. Monteiro Marques, Differential Inclusions in Nonsmooth Mechanical Problems - Shocks and Dry Friction. Birkhauser Verlag, Basel (1993).

[21] J.J. Moreau, Rafle par un convexe variable, I. Sem. d’Anal. Convexe, Montpellier, Exposé No. 15, Vol. 1 (1971).

[22] J.J. Moreau Sur les mesures différentielles de fonctions vectorielles et certains problémes d’évolution C. R. Math. Acad. Sci. Paris Sér. A 1976 837 840

[23] J.J. Moreau Evolution problem associated with a moving convex set in a Hilbert space J. Differ. Equ 1977 347 374

[24] V. Recupero The play operator on the rectifiable curves in a Hilbert space Math. Methods Appl. Sci 2008 1283 1295

[25] V. Recupero BV solutions of rate independent variational inequalities Ann. Sc. Norm. Super. Pisa Cl. Sc 2011 269 315

[26] V. Recupero A continuity method for sweeping processes J. Differ. Equ 2011 2125 2142

[27] V. Recupero Sweeping processes and rate independence J. Convex Anal 2016 921 946

[28] V. Recupero, F. Santambrogio Sweeping processes with prescribed behavior on jumps Ann. Mat. Pura Appl 2018 1311 1332

[29] J. Serra, Hausdorff distances and interpolations. ISMM ’98 Proceedings of the fourth symposium on Mathematical morphology and its applications to image and signal processing, edited by H. Heijmans and J. Roerdink. Kluwer Acad. Publ. (1998) 107–114.

[30] A. Visintin, Differential Models of Hysteresis. In Vol. 111 of Applied Mathematical Sciences. Springer-Verlag, Berlin Heidelberg (1994).

Cité par Sources :