Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2020_15_a45, author = {Sergey Kryzhevich}, title = {Invariant measures for interval translations and some other piecewise continuous maps}, journal = {Mathematical modelling of natural phenomena}, eid = {15}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2019041}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019041/} }
TY - JOUR AU - Sergey Kryzhevich TI - Invariant measures for interval translations and some other piecewise continuous maps JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019041/ DO - 10.1051/mmnp/2019041 LA - en ID - MMNP_2020_15_a45 ER -
%0 Journal Article %A Sergey Kryzhevich %T Invariant measures for interval translations and some other piecewise continuous maps %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019041/ %R 10.1051/mmnp/2019041 %G en %F MMNP_2020_15_a45
Sergey Kryzhevich. Invariant measures for interval translations and some other piecewise continuous maps. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 15. doi : 10.1051/mmnp/2019041. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019041/
[1] Interval translation mappings Ergodic Theory Dyn. Syst 1995 821 832
,[2] Renormalization in a class of interval translation maps of d branches Dyn. Syst 2007 11 24
[3] Inducing and unique ergodicity of double rotations Discrete Contin. Dyn. Syst 2012 4133 4147
,[4] The Gauss map on a class of interval translation mappings Israel J. Math 2003 125 148
,[5] Piecewise isometries have zero topological entropy Ergodic Theory Dyn. Syst 2001 1371 1377
[6] Piecewise monotone maps without periodic points: Rigidity, measures and complexity Ergodic Theory Dyn. Syst 2004 383 405
,[7] Global attractors and invariant measures for non-invertible planar piecewise isometric maps Phys. Lett. A 2007 285 290
,[8] Sofic subshifts and piecewise isometric systems Ergodic Theory Dyn. Syst 1999 1485 1501
[9] Dynamics of piecewise isometries Illinois J. Math 2000 465 478
[10] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press (1997).
[11] B. Pires, Invariant measures for piecewise continuous maps. Preprint arXiv:1603.02542 (2016).
[12] J. Schmeling and S. Troubetzkoy, Interval Translation Mappings. In Dynamical systems (Luminy-Marseille) (1998) 291–302.
[13] Double rotations Discrete Contin. Dyn. Syst 2005 515 532
, ,[14] S. Truong, Dynamics of piecewise translation maps. Preprint arXiv:1610.04700 (2017).
[15] Ergodic theory of interval exchange maps Rev. Matem. Complut 2006 7 100
[16] Almost every interval translation map of three intervals is finite type Discrete Continu. Dyn. Syst. A 2014 2307 2314
[17] D. Volk, Attractors of Piecewise Translation Maps. Preprint arXiv:1708.03780 (2017).
[18] J.-C. Yoccoz, Continued Fraction Algorithms for Interval Exchange Maps: an Introduction. Available on: https://www.college-de-france.fr/media/jean-christophe-yoccoz/UPL13956˙yoccoz.pdf (2020).
[19] Invariant measures for planar piecewise isometries J. Shanghai Univ. (Engl. Ed.) 2010 174 176
, ,Cité par Sources :