Voir la notice de l'article provenant de la source EDP Sciences
S.A. Knavel 1 ; T.V. Savina 1 ; M.V. Mroz 2 ; M.E. Kordesch 2 ; C.N. Eads 3 ; J.T. Sadowski 3 ; S.A. Tenney 3
@article{MMNP_2020_15_a34, author = {S.A. Knavel and T.V. Savina and M.V. Mroz and M.E. Kordesch and C.N. Eads and J.T. Sadowski and S.A. Tenney}, title = {A mathematical model of solid-state dewetting of barium thin films on {W(112)}}, journal = {Mathematical modelling of natural phenomena}, eid = {12}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2019040}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019040/} }
TY - JOUR AU - S.A. Knavel AU - T.V. Savina AU - M.V. Mroz AU - M.E. Kordesch AU - C.N. Eads AU - J.T. Sadowski AU - S.A. Tenney TI - A mathematical model of solid-state dewetting of barium thin films on W(112) JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019040/ DO - 10.1051/mmnp/2019040 LA - en ID - MMNP_2020_15_a34 ER -
%0 Journal Article %A S.A. Knavel %A T.V. Savina %A M.V. Mroz %A M.E. Kordesch %A C.N. Eads %A J.T. Sadowski %A S.A. Tenney %T A mathematical model of solid-state dewetting of barium thin films on W(112) %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019040/ %R 10.1051/mmnp/2019040 %G en %F MMNP_2020_15_a34
S.A. Knavel; T.V. Savina; M.V. Mroz; M.E. Kordesch; C.N. Eads; J.T. Sadowski; S.A. Tenney. A mathematical model of solid-state dewetting of barium thin films on W(112). Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 12. doi : 10.1051/mmnp/2019040. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019040/
[1] R. Brandon and F.J. Bradshaw, The mobility of the surface atoms of copper and silver evaporated deposits in Technical Report 66095. Royal Aircraft Establishment, Farnborough (1966).
[2] Comparison of the agglomeration behavior of thin metallic films on SiO2 J. Vac. Sci. Technol. A 2005 1152 1161
, , , ,[3] Faceting instability in the presence of wetting interactions: a mechanism for the formation of quantum dots Phys. Rev. B 2004 235342
, , ,[4] The vapour pressure of barium and strontium J. Less-Common Metals 1988 249 259
,[5] Work function and surface stability of tungsten-based thermionic electron emission cathodes APL Mater 2017 116105
, ,[6] On the solid-state dewetting of polycrystalline thin films: Capillary versus grain growth approach Acta Mater 2018 281 290
, , , , , ,[7] Capillary instabilities in thin films J. Electr. Mater 1990 1153 1160
,[8] Frontiers in Thermionic Cathode Research IEEE Trans. Electr. Devices 2018 2061
, , , , , , , , , , , ,[9] Comparison of the agglomeration behavior of Au and Cu films sputter deposited on silicondioxide Appl. Phys 2001 3270
, , ,[10] M. Mroz, M.E. Kordesch, J. Sadowski and W. Sitaputra, De-wetting of Barium on W(100) and (110) Surfaces observed using Thermionic Emission Microscopy. 30th International Vacuum Nanoelectronics Conference (IVNC), edited by C. Langer, R. Lawrowski, Book Series: International Vacuum Nanoelectronics Conference (2017) 264–265.
[11] Thermionic emission microscopy of scandium thin film dewetting on W(100) AIP Adv 2018 065114
, , ,[12] Solid Solid dewetting of scandium thin films on the W(100) surface using emission microscopy J. Vac. Sci. Technol. B 2019 012903
, , , ,[13] Theory of thermal grooving Appl. Phys 1957 333 339
[14] Kinetics of instabilities in solid films Europhys. Lett 1986 61 66
,[15] On faceting of a growing crystal surface by surface diffusion Phys. Rev. E 2003 021606
, , , ,[16] M. Schmid, Vapor Pressure Calculator. Technik für Menschen, Institut für Angewandte Physik, Wien Surface Physics Group (2013–2018). Available at: https://www.iap.tuwien.ac.at/www/surface/vapor_pressure (2020).
[17] Solid-state dewetting of thin films Annu. Rev. Mater. Res 2012 399 434
[18] J. Valo and M. Leskela, Thermal analysis in Studies of high-Tc superconductors, in Vol. 2 of Handbook of Thermal Analysis and Calorimetry (2003) 817–879.
[19] Y. Wang, W. Jiang, W. Bao and D.J. Srolovitz, Sharp interface model for solid-state dewetting problems with weakly anisotropic surface energies. Preprint arXiv:1407.8331v1 (2014).
[20] BaxScyOz on W(001), (110), and (112) in scandate cathodes: connecting to experiment via μO and equilibrium crystal shape Appl. Surf. Sci 2018 827 838
, , , , ,[21] The mechanism of corner instabilities in single-crystal thin films during dewetting J. Appl. Phys 2016 125306
, , , ,Cité par Sources :