A mathematical model of solid-state dewetting of barium thin films on W(112)
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 12.

Voir la notice de l'article provenant de la source EDP Sciences

Solid state dewetting occurs when a thin solid film is heated. The temperature of dewetting depends on the thickness of the film; dewetting can be observed in the range of 1∕3 to 1∕2 of the bulk melting temperature. While remaining solid, the film behaves in a manner similar to liquids dewetting and agglomerating to forming islands or droplets. One of the possible mechanisms is the conversion of a metastable thin film geometry into a more stable form. Heating the metastable film gives the film atoms higher mobility, and the films retract, dewetting the surface. This atomic motion can be restricted due to surface anisotropy. We present in situ emission microscopy observations of barium thin films deposited onto W(112) by thermal evaporation. From the modeling viewpoint, the evolution of the film in this system could be divided in four stages: (i) the nucleation and growth of the thin film as a simply connected region; (ii) formation of droplets/islands/hillocks; (iii) nucleation of holes; (iv) evolution of the components of the disconnected film to their equilibrium state. We present a continuum model that is qualitatively consistent with the evolution of the film observed at the initial stage of the experiment and discuss the later stages of the evolution of surface structures.
DOI : 10.1051/mmnp/2019040

S.A. Knavel 1 ; T.V. Savina 1 ; M.V. Mroz 2 ; M.E. Kordesch 2 ; C.N. Eads 3 ; J.T. Sadowski 3 ; S.A. Tenney 3

1 Department of Mathematics, Ohio University, Athens, OH 45701, USA.
2 Department of Physics and Astronomy, Ohio University, Athens, OH 45701, USA.
3 Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA.
@article{MMNP_2020_15_a34,
     author = {S.A. Knavel and T.V. Savina and M.V. Mroz and M.E. Kordesch and C.N. Eads and J.T. Sadowski and S.A. Tenney},
     title = {A mathematical model of solid-state dewetting of barium thin films on {W(112)}},
     journal = {Mathematical modelling of natural phenomena},
     eid = {12},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2019040},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019040/}
}
TY  - JOUR
AU  - S.A. Knavel
AU  - T.V. Savina
AU  - M.V. Mroz
AU  - M.E. Kordesch
AU  - C.N. Eads
AU  - J.T. Sadowski
AU  - S.A. Tenney
TI  - A mathematical model of solid-state dewetting of barium thin films on W(112)
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019040/
DO  - 10.1051/mmnp/2019040
LA  - en
ID  - MMNP_2020_15_a34
ER  - 
%0 Journal Article
%A S.A. Knavel
%A T.V. Savina
%A M.V. Mroz
%A M.E. Kordesch
%A C.N. Eads
%A J.T. Sadowski
%A S.A. Tenney
%T A mathematical model of solid-state dewetting of barium thin films on W(112)
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019040/
%R 10.1051/mmnp/2019040
%G en
%F MMNP_2020_15_a34
S.A. Knavel; T.V. Savina; M.V. Mroz; M.E. Kordesch; C.N. Eads; J.T. Sadowski; S.A. Tenney. A mathematical model of solid-state dewetting of barium thin films on W(112). Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 12. doi : 10.1051/mmnp/2019040. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019040/

[1] R. Brandon and F.J. Bradshaw, The mobility of the surface atoms of copper and silver evaporated deposits in Technical Report 66095. Royal Aircraft Establishment, Farnborough (1966).

[2] P.R. Gadkari, A.P. Warren, R.M. Todi, R.P. Petrova, K.R. Coffey Comparison of the agglomeration behavior of thin metallic films on SiO2 J. Vac. Sci. Technol. A 2005 1152 1161

[3] A.A. Golovin, M.S. Levine, T.V. Savina, S.H. Davis Faceting instability in the presence of wetting interactions: a mechanism for the formation of quantum dots Phys. Rev. B 2004 235342

[4] K.T. Jacob, Y. Waseda The vapour pressure of barium and strontium J. Less-Common Metals 1988 249 259

[5] R. Jacobs, D. Morgan, J. Booske Work function and surface stability of tungsten-based thermionic electron emission cathodes APL Mater 2017 116105

[6] P. Jacquet, R. Podor, J. Lautru, J. Teissere, I. Gozhyk, J. Jupille, R. Lazzari On the solid-state dewetting of polycrystalline thin films: Capillary versus grain growth approach Acta Mater 2018 281 290

[7] E. Jiran, C.V. Thompson Capillary instabilities in thin films J. Electr. Mater 1990 1153 1160

[8] D.M. Kirkwood, S.J. Gross, T.J. Balk, M.J. Beck, J. Booske, D. Busbaher, R. Jacobs, M.E. Kordesch, B. Mitsdarffer, D. Morgan, W.D. Palmer, B. Vancil, J.E. Yater Frontiers in Thermionic Cathode Research IEEE Trans. Electr. Devices 2018 2061

[9] J.Y. Kvon, T.S. Yoon, K.B. Kim, S.H. Min Comparison of the agglomeration behavior of Au and Cu films sputter deposited on silicondioxide Appl. Phys 2001 3270

[10] M. Mroz, M.E. Kordesch, J. Sadowski and W. Sitaputra, De-wetting of Barium on W(100) and (110) Surfaces observed using Thermionic Emission Microscopy. 30th International Vacuum Nanoelectronics Conference (IVNC), edited by C. Langer, R. Lawrowski, Book Series: International Vacuum Nanoelectronics Conference (2017) 264–265.

[11] M. Mroz, T. Savina, M.E. Kordesch, S. Tenney Thermionic emission microscopy of scandium thin film dewetting on W(100) AIP Adv 2018 065114

[12] M. Mroz, T. Savina, M.E. Kordesch, J.T. Sadowski, S.A. Tenney Solid Solid dewetting of scandium thin films on the W(100) surface using emission microscopy J. Vac. Sci. Technol. B 2019 012903

[13] W.W. Mullins Theory of thermal grooving Appl. Phys 1957 333 339

[14] S.A. Safran, D.J. Srolovitz Kinetics of instabilities in solid films Europhys. Lett 1986 61 66

[15] T.V. Savina, A.A. Golovin, S.H. Davis, A.A. Nepomnyashchy, P.W. Voorhees On faceting of a growing crystal surface by surface diffusion Phys. Rev. E 2003 021606

[16] M. Schmid, Vapor Pressure Calculator. Technik für Menschen, Institut für Angewandte Physik, Wien Surface Physics Group (2013–2018). Available at: https://www.iap.tuwien.ac.at/www/surface/vapor_pressure (2020).

[17] C.V. Thompson Solid-state dewetting of thin films Annu. Rev. Mater. Res 2012 399 434

[18] J. Valo and M. Leskela, Thermal analysis in Studies of high-Tc superconductors, in Vol. 2 of Handbook of Thermal Analysis and Calorimetry (2003) 817–879.

[19] Y. Wang, W. Jiang, W. Bao and D.J. Srolovitz, Sharp interface model for solid-state dewetting problems with weakly anisotropic surface energies. Preprint arXiv:1407.8331v1 (2014).

[20] Q. Zhou, X. Liu, T. Maxwell, B. Vancil, T.J. Balk, M.J. Beck BaxScyOz on W(001), (110), and (112) in scandate cathodes: connecting to experiment via μO and equilibrium crystal shape Appl. Surf. Sci 2018 827 838

[21] R.V. Zucker, G.H. Kim, J. Ye, W.C. Carter, C.V. Thompson The mechanism of corner instabilities in single-crystal thin films during dewetting J. Appl. Phys 2016 125306

Cité par Sources :