Voir la notice de l'article provenant de la source EDP Sciences
Thomas D. Lewin 1 ; Philip K. Maini 1 ; Eduardo G. Moros 2 ; Heiko Enderling 2, 3 ; Helen M. Byrne 2
@article{MMNP_2020_15_a39, author = {Thomas D. Lewin and Philip K. Maini and Eduardo G. Moros and Heiko Enderling and Helen M. Byrne}, title = {A three phase model to investigate the effects of dead material on the growth of avascular tumours}, journal = {Mathematical modelling of natural phenomena}, eid = {22}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2019039}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019039/} }
TY - JOUR AU - Thomas D. Lewin AU - Philip K. Maini AU - Eduardo G. Moros AU - Heiko Enderling AU - Helen M. Byrne TI - A three phase model to investigate the effects of dead material on the growth of avascular tumours JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019039/ DO - 10.1051/mmnp/2019039 LA - en ID - MMNP_2020_15_a39 ER -
%0 Journal Article %A Thomas D. Lewin %A Philip K. Maini %A Eduardo G. Moros %A Heiko Enderling %A Helen M. Byrne %T A three phase model to investigate the effects of dead material on the growth of avascular tumours %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019039/ %R 10.1051/mmnp/2019039 %G en %F MMNP_2020_15_a39
Thomas D. Lewin; Philip K. Maini; Eduardo G. Moros; Heiko Enderling; Helen M. Byrne. A three phase model to investigate the effects of dead material on the growth of avascular tumours. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 22. doi : 10.1051/mmnp/2019039. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019039/
[1] Cell adhesion mechanisms and stress relaxation in the mechanics of tumours Biomech. Model. Mechanobiol 2009 397 413
,[2] A mixture theory for the genesis of residual stresses in growing tissues I: a general formulation SIAM J. Appl. Math 2005 1261 1284
,[3] A mixture theory for the genesis of residual stresses in growing tissues II: solutions to the biphasic equations for a multicell spheroid SIAM J. Appl. Math 2005 447 467
,[4] The impact of O2 availability on human cancer Nat. Rev. Cancer 2008 967 975
, ,[5] The role of cell–cell interactions in a two-phase model for a vascular tumour growth J. Math. Biol. 2002 125 152
, ,[6] The unique physiology of solid tumors: opportunities (and problems) for cancer therapy Cancer Res. 1998 1408 1416
,[7] Necrosis and apoptosis: distinct cell loss mechanisms in a mathematical model of avascular tumour growth J. Theor. Med 1998 223 235
,[8] A two-phase model of solid tumour growth Appl. Math. Lett. 2003 567 573
, , ,[9] Angiogenesis in cancer and other diseases Nature 2000 249 257
,[10] Reaction and diffusion on growing domains: scenarios for robust pattern formation Bull. Math. Biol. 1999 1093 1120
, ,[11] Migration and internalization of cells and polystyrenemicrospheres in tumor cell spheroids Exp. Cell Res. 1982 201 209
, , , ,[12] Radiation-induced cell death mechanisms Tumor Biol. 2010 363 372
,[13] Self-regulation of growth in three dimensions J. Exp. Med. 1973 745 753
[14] Models for the growth of a solid tumor by diffusion Stud. Appl. Math. 1972 317 340
[15] On the growth and stability of cell cultures and solid tumors J. Theor. Biol. 1976 229 242
[16] A method for estimating the oxygen consumption rate in multicellular tumour spheroids. J. Roy. Soc. Interface 2014 20131124
, , ,[17] The hallmarks of cancer Cell 2000 57 70
,[18] Hallmarks of cancer: the next generation Cell 2011 646 674
,[19] Multicellular tumor spheroids: an underestimated tool is catching up again J. Biotechnol 2010 3 15
, , , , ,[20] Multiphase modelling of vascular tumour growth in two spatial dimensions J. Theor. Biol. 2013 70 89
,[21] Tumour dynamics and necrosis: surface tension and stability IMA J. Math. Appl. Med. Biol 2001 131 158
,[22] Travelling-wave behaviour in a multiphase model of a population of cells in an artificial scaffold J. Math. Biol. 2007 449 480
,[23] Mathematical modelling of engineered tissue growth using a multiphase porous flow mixture theory J. Math. Biol 2006 571 594
, , , ,[24] R.J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations. Society for Industrial and Applied Mathematics (2007).
[25] The evolution of tumour composition during fractionated radiotherapy: implications for outcome Bull. Math. Biol 2018 1207 1235
, , , ,[26] Boundary conditions in mixture theory and in CFD applications of higher order models Comput. Math. Appl 2007 156 167
[27] A.J. El Haj, S.L. Waters and H.M. Byrne, A multiscale analysis of nutrient transport and biological tissue growth in vitro Math. Med. Biol 2015 345 366
,[28] Pathways of apoptotic and non-apoptotic death in tumour cells Nat. Rev. Cancer 2004 592 603
,[29] Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications J. Math. Biol. 2009 625 656
,[30] A proliferation saturation index to predict radiation response and personalize radiotherapy fractionation Radiat. Oncol 2015 159
, , , , , , , , ,[31] Mechanisms of tumor cell necrosis Curr. Pharm. Des 2010 56 68
,[32] L. Tao and K.R. Rajagopal, On Boundary Conditions In Mixture Theory (1995) 130–149.
[33] Mathematical modelling of avascular-tumour growth IMA J. Math. Appl. Med. Biol. 1997 39 69
,[34] Mathematical modelling of avascular-tumour growth. II: Modelling growth saturation IMA J. Math. Appl. Med. Biol. 1999 171 211
,[35] Spherical cancer models in tumor biology Neoplasia 2015 1 15
, ,Cité par Sources :