Numerical modelling challenges for clinical electroporation ablation technique of liver tumors
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 11.

Voir la notice de l'article provenant de la source EDP Sciences

Electroporation ablation is a promising non surgical and minimally invasive technique of tumor ablation, for which no monitoring is currently available. In this paper, we present the recent advances and challenges on the numerical modeling of clinical electroporation ablation of liver tumors. In particular, we show that a nonlinear static electrical model of tissue combined with clinical imaging can give crucial information of the electric field distribution in the clinical configuration. We conclude the paper by presenting some important questions that have to be addressed for an effective impact of computational modeling in clinical practice of electroporation ablation.
DOI : 10.1051/mmnp/2019037

Olivier Gallinato 1 ; Baudouin Denis de Senneville 1 ; Olivier Seror 2, 3 ; Clair Poignard 1

1 INRIA Bordeaux-Sud-Ouest, CNRS, Bordeaux INP, Univ. Bordeaux, IMB, UMR 5251, 33400 Talence, France.
2 Department of Radiology, Hôpital Jean Verdier, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance Publique Hôpitaux de Paris, Avenue du 14 juillet, 93140 Bondy, France.
3 UMR 1162, Génomique Fonctionnelle des Tumeurs solides, INSERM, Paris, France.
@article{MMNP_2020_15_a36,
     author = {Olivier Gallinato and Baudouin Denis de Senneville and Olivier Seror and Clair Poignard},
     title = {Numerical modelling challenges for clinical electroporation ablation technique of liver tumors},
     journal = {Mathematical modelling of natural phenomena},
     eid = {11},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2019037},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019037/}
}
TY  - JOUR
AU  - Olivier Gallinato
AU  - Baudouin Denis de Senneville
AU  - Olivier Seror
AU  - Clair Poignard
TI  - Numerical modelling challenges for clinical electroporation ablation technique of liver tumors
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019037/
DO  - 10.1051/mmnp/2019037
LA  - en
ID  - MMNP_2020_15_a36
ER  - 
%0 Journal Article
%A Olivier Gallinato
%A Baudouin Denis de Senneville
%A Olivier Seror
%A Clair Poignard
%T Numerical modelling challenges for clinical electroporation ablation technique of liver tumors
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019037/
%R 10.1051/mmnp/2019037
%G en
%F MMNP_2020_15_a36
Olivier Gallinato; Baudouin Denis de Senneville; Olivier Seror; Clair Poignard. Numerical modelling challenges for clinical electroporation ablation technique of liver tumors. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 11. doi : 10.1051/mmnp/2019037. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019037/

[1] B. Al-Sakere, F. André, C. Bernat, E. Connault, P. Opolon, R.V. Davalos, B. Rubinsky, L.M. Mir Tumor ablation with irreversible electroporation PLOS ONE 2007 1 8

[2] D. Amann, A. Blaszczyk, G. Of, O. Steinbach Simulation of floating potentials in industrial applications by boundary element methods J. Math. Ind 2014 13

[3] M. Belehradek, C. Domenge, S. Orlowski, J.J. Belehradek, L.M. Mir Electrochemotherapy, a new antitumor treatment: first clinical phase I/II trial Cancer 1993 3694 700

[4] M. Bower, L. Sherwood, Y. Li, R. Martin Irreversible electroporation of the pancreas: definitive local therapy without systemic effects J. Surg. Oncol 2011 22 28

[5] M. Breton, F. Buret, L. Krähenbühl, M. Leguèbe, L.M. Mir, R. Perrussel, C. Poignard, R. Scorretti, D. Voyer Non-linear steady-state electrical current modeling for the electropermeabilization of biological tissue IEEE Trans. Magn 2015 1 4

[6] C.Y. Calvet, D. Famin, F.M. André, L.M. Mir Electrochemotherapy with bleomycin induces hallmarks of immunogenic cell death in murine colon cancer cells OncoImmunology 2014 e28131

[7] S. Campelo, M. Valerio, H.U. Ahmed, Y. Hu, S.L. Arena, R.E. Neal, M. Emberton, C.B. Arena An evaluation of irreversible electroporation thresholds in human prostate cancer and potential correlations to physiological measurements APL Bioeng 2017 016101

[8] D. Chung, K. Sung, F. Osuagwu, H. Wu, C. Lassman, D. Lu Contrast enhancement patterns after irreversible electroporation: experimental study of ct perfusion correlated to histopathology in normal porcine liver J. Vasc. Intervent. Radiol 2016 104 111

[9] A. Collin, D. Chapelle, P. Moireau A luenberger observer for reaction–diffusion models with front position data J. Comput. Phys 2015 288 307

[10] D. Cukjati, D. Batiuskaite, F. André, D. Miklavčič, L.M. Mir Real time electroporation control for accurate and safe in vivo non-viral gene therapy Bioelectrochemistry 2007 501 507

[11] R. Davalos, S. Bhonsle, R. Neal Implications and considerations of thermal effects when applying irreversible electroporation tissue ablation therapy Prostate 2015 1114 1118

[12] R. Davalos, B. Rubinsky, L. Mir Theoretical analysis of the thermal effects during in vivo tissue electroporation Bioelectrochemistry 2003 99 107

[13] R.V. Davalos, L.M. Mir, B. Rubinsky Tissue Ablation with Irreversible Electroporation Ann. Biomed. Eng 2005 223 231

[14] B. Denis De Senneville, C. Zachiu, M. Ries, C. Moonen Evolution: an edge-based variational method for non-rigid multi-modal image registration Phys. Med. Biol 2016 7377 7396

[15] J. Edd, L. Horowitz, R. Davalos, L. Mir, B. Rubinsky In vivo results of a new focal tissue ablation technique: irreversible electroporation IEEE Trans. Biomed. Eng 2006 1409 1415

[16] A.T. Esser, K.C. Smith, T.R. Gowrishankar, J.C. Weaver Towards solid tumor treatment by irreversible electroporation: intrinsic redistribution of fields and currents in tissue Technol. Cancer Res. Treatment 2007 261 273

[17] R.P. Fedkiw, T. Aslam, B. Merriman, S. Osher A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method) J. Comput. Phys 1999 457 492

[18] C. Gabriel, S. Gabriel, E. Corthout The dielectric properties of biological tissues: I. literature survey Phys. Med. Biol 1996 2231

[19] S. Gabriel, R.W. Lau, C. Gabriel The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 1996 2251

[20] O. Gallinato, B. Denis De Senneville, O. Seror, C. Poignard Numerical workflow of irreversible electroporation for deep-seated tumor Phys. Med. Bio. 2019

[21] O. Gallinato, M. Ohta, C. Poignard, T. Suzuki Free boundary problem for cell protrusion formations: theoretical and numerical aspects J. Math. Biol 2017 263 307

[22] O. Gallinato and C. Poignard, IRENA: a Finite Volume Method based software for the numerical assessment of clinical IRE.

[23] J. Gehl, T. Skovsgaard, L. Mir Vascular reactions to in vivo electroporation: characterization and consequences for drug and gene delivery Biochim. Biophys. Acta 2002 51 58

[24] D. Haemmerich, D.J. Schutt, A.S. Wright, J.G. Webster, D.M. Mahvi Electrical conductivity measurement of excised human metastatic liver tumours before and after thermal ablation Physiolog. Measur 2009 459 466

[25] D. Haemmerich, S.T. Staelin, J.-Z. Tsai, S. Tungjitkusolmun, D.M. Mahvi, J.G. Webster In vivo electrical conductivity of hepatic tumours Physiolog. Measur 2003 251

[26] A. Ivorra, B. Al-Sakere, B. Rubinsky, L.M. Mir In vivo electrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment outcome Phys. Med. Biol 2009 5949 5963

[27] A. Ivorra, L.M. Mir and B. Rubinsky, Electric field redistribution due to conductivity changes during tissue electroporation: experiments with a simple vegetal model. In World Congress on Medical Physics and Biomedical Engineering, September 7–12, 2009, Munich, Germany (2009) 59–62.

[28] A. Ivorra, J. Villemejane, L.M. Mir Electrical modeling of the influence of medium conductivity on electroporation Phys. Chem. Chem. Phys 2010 10055 10064

[29] W. Krassowska, J.C. Neu Response of a single cell to an external electric field Biophys. J 1994 1768 1776

[30] N. Labarbera Uncertainty quantification in irreversible electroporation simulations Bioengineering 2017 41

[31] J. Langus, M. Kranjc, B. Kos, T. Šuštar, D. Miklavčič Dynamic finite-element model for efficient modelling of electric currents in electroporated tissue Sci. Rep 2016 26409

[32] M. Leguèbe, A. Silve, L. Mir, C. Poignard Conducting and permeable states of cell membrane submitted to high voltage pulses: Mathematical and numerical studies validated by the experiments J. Theor. Biol 2014

[33] P. Moireau, D. Chapelle, P.L. Tallec Joint state and parameter estimation for distributed mechanical systems Comput. Methods Appl. Mech. Eng 2008 659 677

[34] P. Moireau, D. Chapelle Reduced-order unscented kalman filtering with application to parameter identification in large-dimensional systems ESAIM: COCV 2011 380 405

[35] R.E. Neal, P.A. Garcia, H. Kavnoudias, F. Rosenfeldt, C.A. Mclean, V. Earl, J. Bergman, R.V. Davalos, K.R. Thomson In vivo irreversible electroporation kidney ablation: experimentally correlated numerical models IEEE Trans. Biomed. Eng 2015 561 569

[36] R.E. Neal, P.A. Garcia, J.L. Robertson, R.V. Davalos Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning IEEE Trans. Biomed. Eng 2012 1076 1085

[37] R.E. Neal, J.L. Millar, H. Kavnoudias, P. Royce, F. Rosenfeldt, A. Pham, R. Smith, R.V. Davalos, K.R. Thomson In vivo characterization and numerical simulation of prostate properties for non-thermal irreversible electroporation ablation: characterized and simulated prostate IRE Prostate 2014 458 468

[38] S.A. Padia, G.E. Johnson, R.S. Yeung, J.O. Park, D.S. Hippe, M.J. Kogut Irreversible electroporation in patients with hepatocellular carcinoma: immediate versus delayed findings at MR imaging Radiology 2015 285 294

[39] P. Philips, Y. Li, S. Li, C. St Hill, R. Martin Efficacy of irreversible electroporation in human pancreatic adenocarcinoma: advanced murine model Mol. Therapy Methods Clin. Dev. 2015

[40] M. Pintar, J. Langus, I. Edhemović, E. Brecelj, M. Kranjc, G. Sersa, T. Šuštar, T. Rodič, D. Miklavčič, T. Kotnik, B. Kos Time-dependent finite element analysis of in vivo electrochemotherapy treatment Technol. Cancer Res. Treatment 2018 1533033818790510

[41] S. Prakash, M.P. Karnes, E.K. Sequin, J.D. West, C.L. Hitchcock, S.D. Nichols, M. Bloomston, S.R. Abdel-Misih, C.R. Schmidt, E.W. Martin, S.P. Povoski, V.V. Subramaniam Ex vivo electrical impedance measurements on excised hepatic tissue from human patients with metastatic colorectal cancer Physiol. Measur 2015 315 328

[42] B. Rubinsky, G. Onik, P. Mikus Irreversible electroporation: a new ablation modality—clinical implications Technol. Cancer Res. Treatment 2007 37 48

[43] W. Rucklidge, Efficient Visual Recognition Using the Hausdorff Distance. Springer-Verlag New York, Inc., Secaucus, NJ, USA (1996).

[44] D. Sel, D. Cukjati, D. Batiuskaite, T. Slivnik, L.M. Mir, D. Miklavčič Sequential finite element model of tissue electropermeabilization Trans. Biomed. Eng 2005 816 827

[45] O. Séror, C. Poignard, O. Gallinato, R. Belkacem-Ourabia, O. Sutter Irreversible electroporation: disappearance of observable changes at imaging does not always imply complete reversibility of the underlying causal tissue changes Radiology 2017

[46] G. Serša, T. Jarm, T. Kotnik, A. Coer, M. Podkrajsek, M. Sentjurc, D. Miklavcic, M. Kadivec, S. Kranjc, A. Secerov Vascular disrupting action of electroporation and electrochemotherapy with bleomycin in murine sarcoma Br. J. Cancer 2008 388 398

[47] O. Sutter, J. Calvo, G. N’Kontchou, J.-C. Nault, R. Ourabia-Belkacem, P. Nahon, N. Ganne-Carrié, V. Bourcier, N. Zentar, F. Bouhafs, N. Sellier, A. Diallo, O. Seror Safety and efficacy of irreversible electroporation for the treatment of hepatocellular carcinoma not amenable to thermal ablation techniques: a retrospective single-center case series Radiology 2017 877 886

[48] O. Sutter, A. Fihri, R. Ourabia-Belkacem, N. Sellier, A. Diallo, O. Seror Real-time 3d virtual target fluoroscopic display for challenging hepatocellular carcinoma ablations using cone beam CT Technol. Cancer Res. Treat 2018

[49] K. Thomson, H. Kavnoudias, R. Neal Introduction to irreversible electroporation–principles and techniques Tech. Vasc. Interv. Radiol 2015 128 134

[50] D. Voyer, A. Silve, L.M. Mir, R. Scorretti, C. Poignard Dynamical modeling of tissue electroporation Bioelectrochemistry 2018 98 110

Cité par Sources :