Phase transitions in nematics: textures with tactoids and disclinations
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 8.

Voir la notice de l'article provenant de la source EDP Sciences

We demonstrate that a first order isotropic-to-nematic phase transition in liquid crystals can be succesfully modeled within the generalized Landau-de Gennes theory by selecting an appropriate combination of elastic constants. The numerical simulations of the model established in this paper qualitatively reproduce the experimentally observed configurations that include interfaces and topological defects in the nematic phase.
DOI : 10.1051/mmnp/2019034

Dmitry Golovaty 1 ; Young-Ki Kim 2 ; Oleg D. Lavrentovich 3 ; Michael Novack 4 ; Peter Sternberg 4

1 Department of Mathematics, The University of Akron, Akron, OH, USA.
2 Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea.
3 Chemical Physics Interdisciplinary Program, Liquid Crystal Institute, Kent State University, OH, USA.
4 Department of Mathematics, Indiana University, Bloomington, IN, USA.
@article{MMNP_2020_15_a32,
     author = {Dmitry Golovaty and Young-Ki Kim and Oleg D. Lavrentovich and Michael Novack and Peter Sternberg},
     title = {Phase transitions in nematics: textures with tactoids and disclinations},
     journal = {Mathematical modelling of natural phenomena},
     eid = {8},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2019034},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019034/}
}
TY  - JOUR
AU  - Dmitry Golovaty
AU  - Young-Ki Kim
AU  - Oleg D. Lavrentovich
AU  - Michael Novack
AU  - Peter Sternberg
TI  - Phase transitions in nematics: textures with tactoids and disclinations
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019034/
DO  - 10.1051/mmnp/2019034
LA  - en
ID  - MMNP_2020_15_a32
ER  - 
%0 Journal Article
%A Dmitry Golovaty
%A Young-Ki Kim
%A Oleg D. Lavrentovich
%A Michael Novack
%A Peter Sternberg
%T Phase transitions in nematics: textures with tactoids and disclinations
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019034/
%R 10.1051/mmnp/2019034
%G en
%F MMNP_2020_15_a32
Dmitry Golovaty; Young-Ki Kim; Oleg D. Lavrentovich; Michael Novack; Peter Sternberg. Phase transitions in nematics: textures with tactoids and disclinations. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 8. doi : 10.1051/mmnp/2019034. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019034/

[1] G. Babakhanova, Z. Parsouzi, S. Paladugu, H. Wang, Y.A. Nastishin, S.V. Shiyanovskii, S. Sprunt, O.D. Lavrentovich Elastic and viscous properties of the nematic dimer CB7CB Phys. Rev. E 2017 062704

[2] J.M. Ball, A. Majumdar Nematic liquid crystals: from Maier-Saupe to a continuum theory Mol. Cryst. Liquid Cryst 2010 1 11

[3] J.M. Ball, A. Zarnescu Orientability and energy minimization in liquid crystal models Arch. Ration. Mech. Anal 2011 493 535

[4] P. Bauman, J. Park, D. Phillips Analysis of nematic liquid crystals with disclination lines Arch. Ration. Mech. Anal 2012 795 826

[5] F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and their Applications, in Vol. 13. Birkhäuser Boston, Inc., Boston, MA (1994).

[6] L. Bronsard, R.V. Kohn Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics J. Differ. Equ 1991 211 237

[7] X. Chen Generation and propagation of interfaces for reaction-diffusion equations J. Differ. Equ 1992 116 141

[8] P. De Mottoni, M. Schatzman Geometrical evolution of developed interfaces Trans. Am. Math. Soc 1995 1533 1589

[9] L.C. Evans, H.M. Soner, P.E. Souganidis Phase transitions and generalized motion by mean curvature Commun. Pure Appl. Math 1992 1097 1123

[10] D. Golovaty, J.A. Montero, P. Sternberg Dimension reduction for the Landau-de Gennes model in planar nematic thin films J. Nonlinear Sci 2015 1431 1451

[11] D. Golovaty, M. Novack, P. Sternberg and R. Venkatraman, A model problem for nematic-isotropic transitions with highly disparate elastic constants. Preprint arXiv:1811.12586 (2018).

[12] D. Golovaty, M. Novack and P. Sternberg, A novel Landau-de Gennes model with quartic elastic terms. Preprint arXiv:1906.09232 (2019).

[13] R. Hardt, F.-H. Lin Harmonic maps into round cones and singularities of nematic liquid crystals Math. Z 1993 575 593

[14] T. Ilmanen Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature J. Differ. Geom 1993 417 461

[15] A. Kaznacheev, M. Bogdanov, S. Taraskin The nature of prolate shape of tactoids in lyotropic inorganic liquid crystals J. Exp. Theor. Phys 2002 57 63

[16] A. Kaznacheev, M. Bogdanov, A. Sonin The influence of anchoring energy on the prolate shape of tactoids in lyotropic inorganicliquid crystals J. Exp. Theor. Phys 2003 1159 1167

[17] T.W. Kibble Topology of cosmic domains and strings J. Phys. A: Math. General 1976 1387

[18] Y.-K. Kim, S.V. Shiyanovskii, O.D. Lavrentovich Morphogenesis of defects and tactoids during isotropic–nematic phase transition in self-assembled lyotropic chromonic liquid crystals J. Phys.: Condens. Matter 2013 404202

[19] G. Kitavtsev, J.M. Robbins, V. Slastikov, A. Zarnescu Liquid crystal defects in the Landau–de Gennes theory in two dimensions—beyond the one-constant approximation Math. Models Methods Appl. Sci 2016 2769 2808

[20] M. Kleman and O.D. Laverntovich, Soft matter physics: an introduction. Springer Science Business Media (2007).

[21] L. Longa, D. Monselesan, H.-R. Trebin An extension of the Landau-Ginzburg-de Gennes theory for liquid crystals Liquid Cryst 1987 769 796

[22] L. Longa, D. Monselesan, H.-R. Trebin An extension of the Landau-Ginzburg-de Gennes theory for liquid crystals Liquid Cryst 1987 769 796

[23] A. Majumdar, A. Zarnescu Landau-de Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond Arch. Ration. Mech. Anal 2010 227 280

[24] N.J. Mottram and C. Newton, Introduction to Q-tensor theory. Technical Report 10, Department of Mathematics, University of Strathclyde (2004).

[25] Y.A. Nastishin, H. Liu, T. Schneider, V. Nazarenko, R. Vasyuta, S.V. Shiyanovskii, O.D. Lavrentovich Optical characterization of the nematic lyotropic chromonic liquid crystals: Light absorption, birefringence, and scalar order parameter Phys. Rev. E 2005 041711

[26] P. Prinsen, P. Van Der Schoot Shape and director-field transformation of tactoids Phys. Rev. E 2003 021701

[27] P. Prinsen, P. Van Der Schoot Continuous director-field transformation of nematic tactoids Eur. Phys. J. E 2004 35 41

[28] P. Prinsen, P. Van Der Schoot Parity breaking in nematic tactoids J. Phys.: Condens. Matter 2004 8835

[29] J. Rubinstein, P. Sternberg, J.B. Keller Fast reaction, slow diffusion, and curve shortening SIAM J. Appl. Math 1987 116 133

[30] J. Rubinstein, P. Sternberg, J.B. Keller Reaction-diffusion processes and evolution to harmonic maps SIAM J. Appl. Math 1989 1722 1733

[31] A. Sonnet and E. Virga, Dissipative Ordered Fluids: Theories for Liquid Crystals. Springer, Bücher, New York (2012).

[32] C. Zhang, A. Acharya, N.J. Walkington, O.D. Lavrentovich Computational modelling of tactoid dynamics in chromonic liquid crystals Liquid Cryst 2018 1084 1100

[33] S. Zhou, A.J. Cervenka, O.D. Lavrentovich Ionic-content dependence of viscoelasticity of the lyotropic chromonic liquid crystal sunset yellow Phys. Rev. E 2014 042505

Cité par Sources :