Voir la notice de l'article provenant de la source EDP Sciences
Dmitry Golovaty 1 ; Young-Ki Kim 2 ; Oleg D. Lavrentovich 3 ; Michael Novack 4 ; Peter Sternberg 4
@article{MMNP_2020_15_a32, author = {Dmitry Golovaty and Young-Ki Kim and Oleg D. Lavrentovich and Michael Novack and Peter Sternberg}, title = {Phase transitions in nematics: textures with tactoids and disclinations}, journal = {Mathematical modelling of natural phenomena}, eid = {8}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2019034}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019034/} }
TY - JOUR AU - Dmitry Golovaty AU - Young-Ki Kim AU - Oleg D. Lavrentovich AU - Michael Novack AU - Peter Sternberg TI - Phase transitions in nematics: textures with tactoids and disclinations JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019034/ DO - 10.1051/mmnp/2019034 LA - en ID - MMNP_2020_15_a32 ER -
%0 Journal Article %A Dmitry Golovaty %A Young-Ki Kim %A Oleg D. Lavrentovich %A Michael Novack %A Peter Sternberg %T Phase transitions in nematics: textures with tactoids and disclinations %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019034/ %R 10.1051/mmnp/2019034 %G en %F MMNP_2020_15_a32
Dmitry Golovaty; Young-Ki Kim; Oleg D. Lavrentovich; Michael Novack; Peter Sternberg. Phase transitions in nematics: textures with tactoids and disclinations. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 8. doi : 10.1051/mmnp/2019034. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019034/
[1] Elastic and viscous properties of the nematic dimer CB7CB Phys. Rev. E 2017 062704
, , , , , , ,[2] Nematic liquid crystals: from Maier-Saupe to a continuum theory Mol. Cryst. Liquid Cryst 2010 1 11
,[3] Orientability and energy minimization in liquid crystal models Arch. Ration. Mech. Anal 2011 493 535
,[4] Analysis of nematic liquid crystals with disclination lines Arch. Ration. Mech. Anal 2012 795 826
, ,[5] F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and their Applications, in Vol. 13. Birkhäuser Boston, Inc., Boston, MA (1994).
[6] Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics J. Differ. Equ 1991 211 237
,[7] Generation and propagation of interfaces for reaction-diffusion equations J. Differ. Equ 1992 116 141
[8] Geometrical evolution of developed interfaces Trans. Am. Math. Soc 1995 1533 1589
,[9] Phase transitions and generalized motion by mean curvature Commun. Pure Appl. Math 1992 1097 1123
, ,[10] Dimension reduction for the Landau-de Gennes model in planar nematic thin films J. Nonlinear Sci 2015 1431 1451
, ,[11] D. Golovaty, M. Novack, P. Sternberg and R. Venkatraman, A model problem for nematic-isotropic transitions with highly disparate elastic constants. Preprint arXiv:1811.12586 (2018).
[12] D. Golovaty, M. Novack and P. Sternberg, A novel Landau-de Gennes model with quartic elastic terms. Preprint arXiv:1906.09232 (2019).
[13] Harmonic maps into round cones and singularities of nematic liquid crystals Math. Z 1993 575 593
,[14] Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature J. Differ. Geom 1993 417 461
[15] The nature of prolate shape of tactoids in lyotropic inorganic liquid crystals J. Exp. Theor. Phys 2002 57 63
, ,[16] The influence of anchoring energy on the prolate shape of tactoids in lyotropic inorganicliquid crystals J. Exp. Theor. Phys 2003 1159 1167
, ,[17] Topology of cosmic domains and strings J. Phys. A: Math. General 1976 1387
[18] Morphogenesis of defects and tactoids during isotropic–nematic phase transition in self-assembled lyotropic chromonic liquid crystals J. Phys.: Condens. Matter 2013 404202
, ,[19] Liquid crystal defects in the Landau–de Gennes theory in two dimensions—beyond the one-constant approximation Math. Models Methods Appl. Sci 2016 2769 2808
, , ,[20] M. Kleman and O.D. Laverntovich, Soft matter physics: an introduction. Springer Science Business Media (2007).
[21] An extension of the Landau-Ginzburg-de Gennes theory for liquid crystals Liquid Cryst 1987 769 796
, ,[22] An extension of the Landau-Ginzburg-de Gennes theory for liquid crystals Liquid Cryst 1987 769 796
, ,[23] Landau-de Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond Arch. Ration. Mech. Anal 2010 227 280
,[24] N.J. Mottram and C. Newton, Introduction to Q-tensor theory. Technical Report 10, Department of Mathematics, University of Strathclyde (2004).
[25] Optical characterization of the nematic lyotropic chromonic liquid crystals: Light absorption, birefringence, and scalar order parameter Phys. Rev. E 2005 041711
, , , , , ,[26] Shape and director-field transformation of tactoids Phys. Rev. E 2003 021701
,[27] Continuous director-field transformation of nematic tactoids Eur. Phys. J. E 2004 35 41
,[28] Parity breaking in nematic tactoids J. Phys.: Condens. Matter 2004 8835
,[29] Fast reaction, slow diffusion, and curve shortening SIAM J. Appl. Math 1987 116 133
, ,[30] Reaction-diffusion processes and evolution to harmonic maps SIAM J. Appl. Math 1989 1722 1733
, ,[31] A. Sonnet and E. Virga, Dissipative Ordered Fluids: Theories for Liquid Crystals. Springer, Bücher, New York (2012).
[32] Computational modelling of tactoid dynamics in chromonic liquid crystals Liquid Cryst 2018 1084 1100
, , ,[33] Ionic-content dependence of viscoelasticity of the lyotropic chromonic liquid crystal sunset yellow Phys. Rev. E 2014 042505
, ,Cité par Sources :