Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2020_15_a27, author = {Igor Loutsenko and Oksana Yermolayeva}, title = {On integrability and exact solvability in deterministic and stochastic {Laplacian} growth}, journal = {Mathematical modelling of natural phenomena}, eid = {3}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2019033}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019033/} }
TY - JOUR AU - Igor Loutsenko AU - Oksana Yermolayeva TI - On integrability and exact solvability in deterministic and stochastic Laplacian growth JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019033/ DO - 10.1051/mmnp/2019033 LA - en ID - MMNP_2020_15_a27 ER -
%0 Journal Article %A Igor Loutsenko %A Oksana Yermolayeva %T On integrability and exact solvability in deterministic and stochastic Laplacian growth %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019033/ %R 10.1051/mmnp/2019033 %G en %F MMNP_2020_15_a27
Igor Loutsenko; Oksana Yermolayeva. On integrability and exact solvability in deterministic and stochastic Laplacian growth. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 3. doi : 10.1051/mmnp/2019033. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019033/
[1] On a class of polynomials connected with the Korteveg-de Vries equation Commun. Math. Phys 1978 1 30
,[2] Random normal matrices and Ward identities Ann. Probab 2015 1157 1201
, ,[3] Fluctuations of eigenvalues of random normal matrices Duke Math. J 2011 31 81
, ,[4] Levy processes – from probability to finance and quantum groups Notices AMS 2004 1336 1347
[5] Harmonic measure and SLE Commun. Math. Phys 2009 577 595
,[6] Integral means spectrum of whole-plane SLE Commun. Math. Phys 2017 119 133
, ,[7] Viscous flows in two dimensions Rev. Mod. Phys 1986 977
, , , ,[8] Huygens principle in Minkowski spaces and soliton solutions of the Korteweg-de Vries Equation Commun. Math. Phys 1997 113 132
,[9] Fundamental solutions for partial differential equations with reflection group invariance J. Math. Phys 1995 4324 4339
,[10] Huygens’ principle and integrability Russ. Math. Surv 1994 5 77
,[11] New applications of quantum algebraically integrable systems in fluid dynamics Anal. Math. Phys 2013 277 294
, ,[12] A set of differential equations which can be solved by polynomials Proc. London Soc 1929
,[13] Algebraic integrability for Schrodinger equations and finite reflection groups Theor. Math. Phys 1993 253 275
, ,[14] New integrable generalizations of Calogero- Moser quantum problem J. Math. Phys 1998 695 703
, ,[15] Multidimensional Baker-Akhiezer functions and Huygens’ principle Commun. Math. Phys 1999 533 566
, ,[16] SLE for theoretical physicists Ann. Phys 2005 81 118
[17] Laplacian path models J. Anal. Math 2002 103 150
,[18] D. Crowdy, Quadrature domains and fluid dynamics, In Quadrature domains and their applications, Vol. 156 of Oper. Theory Adv. Appl. Birkhauser, Basel (2005) 113–129.
[19] Long-time behavior of the N-finger solution of the Laplacian growth equation Physica D 1994 373 387
,[20] Conformally invariant fractals and potential theory Phys. Rev. Lett 2000 1363 1367
[21] The coefficient problem and multifractality of whole-plane SLE and LLE Ann. Henri Poincare 2015 1311 1395
, , ,[22] Integrability of filtration problems with a moving boundary Dokl. Akad. Nauk SSSR 1990 42 47
[23] Non-algebraic quadrature domains Potent. Anal 2013 787 804
,[24] On Hele–Shaw models with surface tension Math. Res. Lett 1996 467 474
,[25] Matrix models of 2D gravity and Toda theory Nucl. Phys. B 1991 565 618
, , , ,[26] Stochastic geometry of critical curves, Schramm–Loewner evolutions and conformal field theory J. Phys. A: Math. Gen 2006 12601 12655
[27] B. Gustafsson and H.S. Shapiro, What is a quadrature domain? In Quadrature domains and their applications, Vol. 156 of Oper. Theory Adv. Appl. Birkhauser, Basel (2005) 1–25.
[28] B. Gustafsson, R. Teodorescu and A. Vasil’ev, Classical and stochastic Laplacian growth. Advances in Mathematical Fluid Mechanics. Birkhauser/Springer, Cham (2014).
[29] Diffusion limited aggregation: a model for pattern formation Physics Today 2000 36
[30] Fractal measures and their singularities: the characterization of strange sets Phys. Rev. A 1986 1141
, , , ,[31] Multifractal dimensions for branched growth J. Stat. Phys 1996 681 743
, ,[32] Constrained reductions of 2D dispersionless Toda Hierarchy, Hamiltonian Structure and Interface Dynamics J. Math. Phys 2005 112701
, ,[33] Exact Multifractal Spectra for Arbitrary Laplacian Random Walks Phys. Rev. Lett 2002
[34] Laplacian growth as one-dimensional turbulence Physica D 1998 244 252
,[35] A class of exactly solvable free-boundary inhomogeneous porous medium flows Appl. Math. Lett 2007 93 97
, ,[36] Soliton solutions of integrable hierarchies and Coulomb plasmas J. Stat. Phys 2000
,[37] Short wave instabilities and ill-posed initial value problems Theoret. Comp. Fluid Dyn 1990 191 227
,[38] Construction of quadrature domains in ℝn from quadrature domains in ℝ2 Complex Var. Elliptic Eq 1992 179 188
[39] A four-dimensional Neumann ovaloid Ark. Mat 2017 185 198
,[40] Planar elliptic growth Complex Anal. Oper. Theory 2009 425 451
, ,[41] The τ-function for analytic curves MSRI Publ 2001 285 299
, , , ,[42] Laplacian growth and Whitham equations of soliton theory Physica D 2004 1 28
, , ,[43] Conformally invariant processes in the plane. Mathematical Surveys and Monographs 114 Am. Math. Soc., Providence, RI 2005
[44] Conformal invariance and 2D statistical physics Bull. Am. Math. Soc 2009 35 54
[45] The variable coefficient Hele–Shaw problem, Integrability and quadrature identities Commun. Math. Phys 2006 465 479
[46] SLEκ: correlation functions in the coefficient problem J. Phys. A: Math. Theor 2012 275001
[47] Self-similar potentials and Ising models Pis’ma v ZhETF (JETP Lett.) 1997 747 753
,[48] Spectral self-similarity, one-dimensional Ising chains and random matrices Nucl. Phys. B 1999 731 758
,[49] Non-Laplacian growth: exact results Physica D 2007 56 61
,[50] I. Loutsenko and O. Yermolayeva, Stochastic Loewner Evolutions, Fuchsian Systems and Orthogonal Polynomials. Preprint arXiv:1904.01472.
[51] On exact multi-fractal spectrum of the whole-plane SLE J. Stat. Mech 2013
,[52] New exact results in spectra of stochastic Loewner evolution J. Phys. A 2014 165202
,[53] On a competitive model of Laplacian growth J. Stat. Phys 2011 919 931
, ,[54] Laplacian growth, elliptic growth, and singularities of the Schwarz potential J. Phys. A: Math. Theor 2011 135202
[55] The universality class of diffusion-limited aggregation and viscous fingering Europhys. Lett 2006 257 263
, , ,[56] Poisson growth Anal. Math. Phys 2015 193 205
,[57] Selection of the Saffman-Taylor finger width in the absence of surface tension: an exact result Phys. Rev. Lett 1998 2113
[58] Integrable structure of interface dynamics Phys. Rev. Lett 2000 5106 5109
, ,[59] Random matrix theory in 2D, Laplacian growth, and operator theory J. Phys. A: Math. Theor 2008
, ,[60] T. Miwa, M. Jimbo and E. Date, Solitons: Differential Equations, Symmetries and Infinite-Dimensional Algebras. Cambridge University Press (2000).
[61] Global properties of stochastic Loewner evolution driven by Lévy processes J. Stat. Mech 2008 P01019
, , ,[62] On the displacement of the oilbearing contour C. R. (Dokl.) Acad. Sci. URSS, n. Ser 1945 250 254
[63] Hele Shaw flows with a free boundary produced by the injection of fluid into a narrow channel J. Fluid Mech 1972 609 618
[64] Some remarks on Laplacian growth Topol. Appl 2005 26 43
,[65] Stochastic Loewner evolution driven by Levy processes J. Stat. Mech 2006 P01001
, , ,[66] The penetration of a fluid into a porous medium or Hele–Shaw cell containing a more viscous liquid Proc. R. Soc. A: Math. Phys. Eng. Sci 1958 312 329
,[67] G. Selander, Two deterministic growth models related to diffusion-limited aggregation. Thesis. KTH, Stockholm (1999).
[68] H.S. Shapiro, The Schwarz Function and Its Generalization to Higher Dimensions. Arkansas Lecture Notes in the Mathematical Sciences 9, John Wily Sons, Inc., New York (1992).
[69] A.N. Varchenko and P.I. Etingof, Why the boundary of a round drop becomes a curve of order four. American Mathematical Society, University Lecture Series, 3 (1994).
[70] New applications of non-hermitian random matrices Ann. Henri Poincare 2003 S851 S861
[71] Growth of fat slits and dispersionless KP hierarchy J. Phys. A: Math. Theor 2009 497 514
[72] Canonical and grand canonical partition functions of Dyson gases as tau-functions of integrable hierarchies and their fermionic realization Complex Anal. Operat. Theory 2010 497 514
Cité par Sources :