Integrability-preserving regularizations of Laplacian Growth
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 9.

Voir la notice de l'article provenant de la source EDP Sciences

The Laplacian Growth (LG) model is known as a universality class of scale-free aggregation models in two dimensions, characterized by classical integrability and featuring finite-time boundary singularity formation. A discrete counterpart, Diffusion-Limited Aggregation (or DLA), has a similar local growth law, but significantly different global behavior. For both LG and DLA, a proper description for the scaling properties of long-time solutions is not available yet. In this note, we outline a possible approach towards finding the correct theory yielding a regularized LG and its relation to DLA.
DOI : 10.1051/mmnp/2019032

Razvan Teodorescu 1

1 4202 E. Fowler Ave., CMC342, Tampa, FL 33620, USA.
@article{MMNP_2020_15_a33,
     author = {Razvan Teodorescu},
     title = {Integrability-preserving regularizations of {Laplacian} {Growth}},
     journal = {Mathematical modelling of natural phenomena},
     eid = {9},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2019032},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019032/}
}
TY  - JOUR
AU  - Razvan Teodorescu
TI  - Integrability-preserving regularizations of Laplacian Growth
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019032/
DO  - 10.1051/mmnp/2019032
LA  - en
ID  - MMNP_2020_15_a33
ER  - 
%0 Journal Article
%A Razvan Teodorescu
%T Integrability-preserving regularizations of Laplacian Growth
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019032/
%R 10.1051/mmnp/2019032
%G en
%F MMNP_2020_15_a33
Razvan Teodorescu. Integrability-preserving regularizations of Laplacian Growth. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 9. doi : 10.1051/mmnp/2019032. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019032/

[1] O. Alekseev, M. Mineev-Weinstein Stochastic Laplacian growth Phys. Rev. E 2016 060103

[2] O. Alekseev, M. Mineev-Weinstein Theory of stochastic Laplacian growth J. Stat. Phys 2017 68 91

[3] O. Alekseev, M. Mineev-Weinstein Statistical mechanics of stochastic growth phenomena Phys. Rev. E 2017 010103

[4] F. Balogh, M. Bertola, S.Y. Lee and K.D.T.-R. McLaughlin, Strong asymptotics of the orthogonal polynomial with respect to a measure supported on the plane. Preprint arXiv.math-ph.:1209.6366 (2012).

[5] M. Bauer, D. Bernard 2D growth processes: SLE and Loewner chains Phys. Rep 2006 115

[6] E. Ben-Jacob From snowflake formation to the growth of bacterial colonies. Part 2: Cooperative formation of complex colonial patterns Contempt. Phys. 1997 205 241

[7] D. Bensimon, L. Kadanoff, S. Liang, B. Shraiman, C. Tang Viscous flows in two dimensions Rev. Mod. Phys 1986 977

[8] E. Bettelheim, Classical and Quantum Integrability in Laplacian Growth. Preprint arXiv:1506.01463 [nlin.PS] (2015).

[9] P. Bleher, A. Its Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model Ann. Math 1999 185 266

[10] P. Bleher, A.B.J. Kuijlaars Large n limit of Gaussian random matrices with external source, part I Commun. Math. Phys 2004 43 76

[11] P. Bleher, A. Kuijlaars Orthogonal polynomials in the normal matrix model with a cubic potential Adv. Math 2012 1272 1321

[12] P. Bleher, A. Kuijllars, S. Delvaux Random matrix model with external source and a constrained vector equilibrium problem Commun. Pure Appl. Math 2011 116160

[13] L. Carleson, N. Makarov Aggregation in the plane and Loewner’s equation Commun. Math. Phys 2001 538 607

[14] E. Dibenedetto, A. Friedman Bubble growth in porous media Indiana Univ. Math. J 1986 573 606

[15] M. Duits, A.B.J. Kuijlaars Painlevé I asymptotics for orthogonal polynomials with respect to a varying weight Nonlinearity 2006 2211 2245

[16] P. Ebenfelt, B. Gustafsson, D. Khavinson and M. Putinar eds., Quadrature Domains and Their Applications, The Harold S. Shapiro Anniversary Volume, Birkhäuser, Basel (2005).

[17] P. Elbau, G. Felder Density of eigenvalues of random normal matrices Commun. Math. Phys 2005 433 450

[18] A.S. Fokas, A.R. Its, A.V. Kitaev The isomonodromy approach to matrix problems in 2D quantum gravity Commun. Math. Phys. 1992 395 430

[19] L.A. Galin Unsteady filtration with a free surface Dokl. Akad. Nauk SSSR 1945 250 253

[20] S. Garoufalidis, A. Its, A. Kapaev, M. Mari-O Asymptotics of the Instantons of Painlev I Int. Math. Res. Notices 2012 561 606

[21] C. Gomez, M. Ruiz-Altaba and G. Sierra, Quantum groups in two-dimensional physics. Cambridge Univ. Press (1996).

[22] A.A. Gonchar, E.A. Rakhmanov Equilibrium measure and the distribution of zeros of extremal polynomials Mat. Sbornik 1984 117 127

[23] B. Gustafsson, R. Teodorescu and A. Vasil’ev, Classical and stochastic Laplacian growth. Springer International Publishing (2014).

[24] A. Hassel, S. Zelditch Determinants of Laplacians in exterior domains IMRN 1999 971 1004

[25] M.B. Hastings, L.S. Levitov Laplacian growth as one-dimensional turbulence Physica D 1998 244

[26] H. Hedenmalm, S. Shimorin Hele-Shaw flow on hyperbolic surfaces. J. Math. Pures Appl. 2002 187 222

[27] S.D. Howison Fingering in Hele-Shaw cells J. Fluid Mech 1986 439 453

[28] S.D. Howison Complex variable methods in Hele-Shaw moving boundary problems Eur. J. Appl. Math 1992 209 224

[29] S. Howison, I. Loutsenko, J. Ockendon A class of exactly solvable free-boundary inhomogeneous porous medium flows Appl. Math. Lett 2007 93 97

[30] A.R. Its and L.A. Takhtajan, Normal matrix models, ∂̅-problem, and orthogonal polynomials on the complex plane. Preprint arXiv.math.:0708.3867 (2007).

[31] J. Jenkins, Univalent functions and conformal mapping. Springer-Verlag (1958).

[32] F. Johansson Viklund, A. Sola, A. Turner Scaling limits of anisotropic Hastings-Levitov clusters Ann. Inst. Henri Poincaré Probab. Stat 2012 235 357

[33] F. Johansson Viklund, A. Sola, A. Turner Small-particle limits in a regularized Laplacian growth model Commun. Math. Phys 2015 331 366

[34] Q. Kang, D. Zhang, S. Chen Immiscible displacement in a channel: simulations of fingering in two dimensions Adv. Wat. Res 2004 13 22

[35] L. Karp Construction of quadrature domains in Rn from quadrature domains in R2 Complex Var. Theory Appl 1992 179 188

[36] D. Khavinson, M. Mineev-Weinstein, M. Putinar Planar eliptic growth Complex Anal. Oper. Theory 2009 425 451

[37] D. Khavinson, M. Mineev-Weinstein, M. Putinar, R. Teodorescu Lemniscates are destroyed by eliptic growth Math. Res. Lett 2010 337

[38] I. Kostov, I. Krichever, M. Mineev-Weinstein, P. Wiegmann and A. Zabrodin, τ-function for analytic curves. Vol. 40 of Random Matrix Models and Their Applications, Math. Sci. Res. Inst. Publ. Cambridge University Press (2001) 285–299.

[39] I. Krichever, A. Marshakov, A. Zabrodin. Integrable structure of the Dirichlet boundary problem in multiply-connected domains Commun. Math. Phys 2005 1 44

[40] I. Krichever, M. Mineev-Weinstein, P. Wiegmann, A. Zabrodin Laplacian growth and Whitham equations of soliton theory Physica D 2004 1 28

[41] P.P. Kufarev A solution of the boundary problem of an oil well in a circle Dokl. Acad. Nauk SSSR 1948 1333 1334

[42] J.S. Langer Instabilities and pattern formation in crystal growth Rev. Mod. Phys 1980 1 28

[43] S.-Y. Lee and N. Makarov, Topology of quadrature domains. arXiv:1307.0487 [math.CV] (2015).

[44] S.-Y. Lee, R. Teodorescu, P. Wiegmann Shocks and finite-time singularities in Hele-Shaw flow Physica D 2009 1113 1128

[45] S.-Y. Lee, R. Teodorescu, P. Wiegmann Weak solution of the Hele-Shaw problem: shocks and viscous fingering JETP Lett 2010 9196

[46] S.-Y. Lee, R. Teodorescu, P. Wiegmann Viscous shocks in Hele-Shaw flow and Stokes phenomena of the Painlevé I transcendent Physica D 2011 1080 1091

[47] D.S. Lubinsky, H.N. Mhaskar, E.B. Saff A proof of Freud’s conjecture for exponential weights Constr. Approx 1988 65 83

[48] E. Lundberg, D. Khavinson Gravitational lensing by a collection of objects with radial densities Anal. Math. Phys 2011 139 145

[49] P. Macklin, J. Lowengrub An improved geometry-aware curvature discretization for level set methods: application to tumor growth J. Comput. Phys 2006 392 401

[50] O. Marchal, M. Cafasso Double-scaling limits of random matrices and minimal (2m, 1) models: the merging of two cuts in a degenerate case J. Stat. Mech. Theory Exp 2011 P04013

[51] A. Marshakov, P. Wiegmann, A. Zabrodin Integrable structure of the Dirichlet boundary problem in two dimensions Commun. Math. Phys 2002 131 153

[52] A. Martinez-Finkelshtein, P. Martinez-González, R. Orive Asymptotics of polynomial solutions of a class of generalized Lamé differential equations Electr. Trans. Numer. Anal 2005 18 28

[53] A. Martínez-Finkelshtein, E.A. Rakhmanov. Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials Comm. Math. Phys 2011 53 111

[54] A. Martínez-Finkelshtein, E.B. Saff Asymptotic properties of Heine-Stieltjes and Van Vleck polynomials J. Approx. Theory 2002 131 151

[55] E. Memin, P. Perez Fluid motion recovery by coupling dense and parametric vector fields IEEE CVPR 1999 620 625

[56] H.N. Mhaskar, E.B. Saff Where does the sup norm of a weighted polynomial live? (A generalization of incomplete polynomials) Constr. Approx 1985 71 91

[57] M.B. Mineev A finite polynomial solution of the two-dimensional interface dynamics Physica D 1990 288 292

[58] M. Mineev-Weinstein Multidimensional pattern formation has an infinite number of constants of motion Phys. Rev. E 1993 R2241 R2244

[59] M.B. Mineev-Weinstein Selection of the Saffman-Taylor finger in the absence of surface tension: an exact result Phys. Rev. Lett 1998 2113 2116

[60] M.B. Mineev-Weinstein, S.P. Dawson A class of non-singular exact solutions for Laplacian pattern formation Phys. Rev. E 1994 R24 R27

[61] M. Mineev-Weinstein, P.B. Wiegmann, A. Zabrodin Integrable structure of interface dynamics Phys. Rev. Lett 2000 5106

[62] M. Mineev-Weinstein, M. Putinar, L Sander, A. Zabrodin Physics and mathematics of growing interfaces Physica D 2007 235

[63] M. Mineev-Weinstein, M. Putinar, R. Teodorescu Random matrices in 2D Laplacian growth and operator theory J. Phys. A: Math. Theor 2008 263001

[64] M.Y. Mo The Riemann-Hilbert approach to double scaling limit of random matrix eigenvalues near the “birth of a cut” transition Int. Math. Res. Not. IMRN 2008 rnn042

[65] J. Norris, A. Turner Hastings-Levitov aggregation in the small-particle limit Commun. Math. Phys 2012 809 841

[66] R. Orive, Z. García On a class of equilibrium problems in the real axis J. Comput. Appl. Math 2010 1065 1076

[67] P. Ya. Polubarinova-Kochina On a problem of the motion of the contour of a petroleum shell Dokl. Akad. Nauk USSR 1945 254 257

[68] Ch. Pommerenke, Univalent functions, with a chapter on quadratic differentials by G. Jensen. Vandenhoeck Ruprecht, Göttingen (1975).

[69] Ch. Pommerenke, Boundary behaviour of conformal maps. Springer, Berlin (1992).

[70] O. Praud, H.L. Swinney Fractal dimensions and unscreened angles measured for radial viscous fingering Phys. Rev. E 2005 011406

[71] A. Pressley and G. Segal, Loop groups, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1986).

[72] G. Prokert Existence results for Hele-Shaw flow driven by surface tension Eur. J. Appl. Math 1998 195 221

[73] E.A. Rakhmanov The convergence of diagonal Padé approximants Mat. Sb. (N.S.) 1977 271 291

[74] S. Richardson Hele-Shaw flows with a free boundary produced by the injection of fluid into a narrow channel J. Fluid Mech 1972 609 618

[75] P.G. Saffman, G. Taylor The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid Proc. Roy. Soc. London. Ser. A 1958 312 329

[76] E.B. Saff and V. Totik, Logarithmic Potentials with External Fields. Vol. 316 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin (1997).

[77] Y. Sawada, A. Dougherty, J.P. Gollub Dendritic and fractal patterns in electrolytic metal deposits Phys. Rev. Lett 1986 1260 1263

[78] B. Shraiman, D. Bensimon Singularities in nonlocal interface dynamics Phys. Rev. A 1984 2840

[79] M.G. Stepanov, L.S. Levitov Laplacian growth with separately controlled noise and anisotropy Phys. Rev. E 2001 061102

[80] K. Takasaki, T. Takebe Integrable hierarchies and dispersionless limit Rev. Math. Phys 1995 743

[81] G. Taylor, P.G. Saffman A note on the motion of bubbles in a Hele-Shaw cell and porous medium Q. J. Mech. Appl. Math 1959 265 279

[82] R. Teodorescu Generic critical points of normal matrix ensembles J. Phys. A: Math. Theor 2006 8921

[83] R. Teodorescu, E. Bettelheim, O. Agam, A. Zabrodin, P. Wiegmann Normal random matrix ensemble as a growth problem Nucl. Phys. B 2005 407 444

[84] R. Teodorescu, P. Wiegmann, A. Zabrodin Unstable fingering patterns of Hele-Shaw flows as a dispersionless limit of the Kortweg-de Vries hierarchy Phys. Rev. Lett 2005 044502

[85] Y. Tu Saffman-Taylor problem in sector geometry: solution and selection Phys. Rev. A 1991 1203 1210

[86] W. Van Assche, J. Geronimo and A.B.J. Kuijlaars, Riemann-Hilbert problems for multiple orthogonal polynomials, in Special Functions 2000 edited by J. Bustoz et al. Kluwer, Dordrecht (2001) 23–59.

[87] A.N. Varchenko and P.I. Etingof, Why the boundary of a round drop becomes a curve of order four. Vol. 3 of University Lecture Series. American Mathematical Society, Providence, RI (1992).

[88] Yu.P. Vinogradov, P.P. Kufarev On some particular solutions of the problem of filtration Doklady Akad. Nauk SSSR (N.S.) 1947 335 338

[89] D.V. Voiculescu Free probability for pairs of faces II: 2-variables bi-free partial R-transform and systems with rank ≤ 1 commutation Ann. Inst. Henri Poincaré Probab. Statist 2016 1 15

[90] P.B. Wiegmann, A. Zabrodin Conformal maps and integrable hierarchies Commun. Math. Phys. 2000 523 538

[91] P. Wiegmann, A. Zabrodin Large scale correlations in normal and general non-Hermitian matrix ensembles J. Phys. A 2003 3411 3424

[92] P. Wiegmann and A. Zabrodin, Large N expansion for normal and complex matrix ensembles. Frontiers Number Theory, Physics, and Geometry I. Springer, Berlin/Heidelberg, Part I (2006) 213–229.

Cité par Sources :