Voir la notice de l'article provenant de la source EDP Sciences
Eszter Fehér 1, 2 ; Balázs Havasi-Tóth 3 ; Tamás Kalmár-Nagy 4
@article{MMNP_2020_15_a47, author = {Eszter Feh\'er and Bal\'azs Havasi-T\'oth and Tam\'as Kalm\'ar-Nagy}, title = {Hysteretic behavior of spatially coupled phase-oscillators}, journal = {Mathematical modelling of natural phenomena}, eid = {18}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2019029}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019029/} }
TY - JOUR AU - Eszter Fehér AU - Balázs Havasi-Tóth AU - Tamás Kalmár-Nagy TI - Hysteretic behavior of spatially coupled phase-oscillators JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019029/ DO - 10.1051/mmnp/2019029 LA - en ID - MMNP_2020_15_a47 ER -
%0 Journal Article %A Eszter Fehér %A Balázs Havasi-Tóth %A Tamás Kalmár-Nagy %T Hysteretic behavior of spatially coupled phase-oscillators %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019029/ %R 10.1051/mmnp/2019029 %G en %F MMNP_2020_15_a47
Eszter Fehér; Balázs Havasi-Tóth; Tamás Kalmár-Nagy. Hysteretic behavior of spatially coupled phase-oscillators. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 18. doi : 10.1051/mmnp/2019029. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019029/
[1] Targeted assembly and synchronization of self-spinning microgears Nat. Phys 2018 1114 1118
, , ,[2] Generative models of cortical oscillations: neurobiological implications of the Kuramoto model Front. Human Neurosci 2010 190
, ,[3] Generalising the Kuramoto model for the study of neuronal synchronisation in the brain Physica D 2007 181 196
,[4] A. Cenedese and C. Favaretto, On the synchronization of spatially coupled oscillators (2015).
[5] An adaptive model for synchrony in the firefly pteroptyx malaccae J. Math. Biol 1991 571 585
[6] Beyond a pacemaker’s entrainment limit: phase walk-through Am. J. Physiol 1984 R102 R106
,[7] Analysis of a power grid using a Kuramoto-like model Eur. Phys. J. B 2008 485 491
, ,[8] F.E. Hanson, Comparative studies of firefly pacemakers. Vol. 37 of Federation proceedings (1978) 2158–2164.
[9] Numerical simulation of a large number of coupled lasers J. Opt. Soc. Am. B 1996 155
,[10] Imperfect chimera states for coupled pendula Sci. Rep 2014 6379
, , , ,[11] International symposium on mathematical problems in mathematical physics Lect. Notes Theor. Phys 1975 420
[12] Synchronizing a weighted and weakly-connected Kuramoto-oscillator digraph with a pacemaker IEEE Trans. Circ. Syst. I: Regular Papers 2015 899 905
,[13] Coupling of protein localization and cell movements by a dynamically localized response regulator in Myxococcus xanthus EMBO J. 2007 4433 4444
, , , ,[14] Multistability in the Kuramoto model with synaptic plasticity Phys. Rev. E 2007
, , , ,[15] N. Motee and Q. Sun, Sparsity measures for spatially decayingsystems (2014).
[16] Learning-rate-dependent clustering and self-development in a network of coupled phase oscillators Phys. Rev. E 2009
,[17] Heterogeneity effects in power grid network models Phys. Rev. E 2018 022305
,[18] Hysteretic transitions in the Kuramoto model with inertia Phys. Rev. E 2014 042905
, , ,[19] Synchronization and clustering of phase oscillators with heterogeneous coupling Europhys. Lett 2007 20001
,[20] Effects of assortative mixing in the second-order Kuramoto model Phys. Rev. E 2015 052805
, , ,[21] Self-organized synchronization in decentralized power grids Phys. Rev. Lett 2012 064101
, , ,[22] Arnold diffusion in the swing equations of a power system IEEE Trans. Circ. Syst 1984 673 688
, ,[23] Stability of a chain of phase oscillators Phys. Rev. E 2011 016227
,[24] D. Shepard, A two-dimensional interpolation function for irregularly-spaced data. Proceedings ofthe 1968 23rd ACM national conference. ACM (1968) 517–524.
[25] Self-synchronization of coupled oscillators with hysteretic responses Physica D 1997 279 300
, ,[26] Synchronization in disordered Josephson junction arrays: small-world connections and the Kuramoto model Phys. Rev. E 2005
, ,[27] Effect of disorder and noise in shaping the dynamics of power grids Europhys. Lett 2018 20001
, ,[28] B. Tóth, Nauticle: a general-purpose particle-based simulation tool. Preprint abs/1710.08259 (2018).
[29] Acoustic synchrony: two mechanisms in the snowy tree cricket Science 1969 891 894
[30] Exact explosive synchronization transitions in Kuramoto oscillators with time-delayed coupling Sci. Rep 2018 15521
, , ,[31] Synchronization of phase oscillators with frequency-weighted coupling Sci. Rep 2016 21926
, , , , ,[32] Multistable states in a system of coupled phase oscillators with inertia Sci. Rep 2017 42178
, , , , ,Cité par Sources :