Hysteretic behavior of spatially coupled phase-oscillators
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 18.

Voir la notice de l'article provenant de la source EDP Sciences

Motivated by phenomena related to biological systems such as the synchronously flashing swarms of fireflies, we investigate a network of phase oscillators evolving under the generalized Kuramoto model with inertia. A distance-dependent, spatial coupling between the oscillators is considered. Zeroth and first order kernel functions with finite kernel radii were chosen to investigate the effect of local interactions. The hysteretic dynamics of the synchronization depending on the coupling parameter was analyzed for different kernel radii. Numerical investigations demonstrate that (1) locally locked clusters develop for small coupling strength values, (2) the hysteretic behavior vanishes for small kernel radii, (3) the ratio of the kernel radius and the maximal distance between the oscillators characterizes the behavior of the network.
DOI : 10.1051/mmnp/2019029

Eszter Fehér 1, 2 ; Balázs Havasi-Tóth 3 ; Tamás Kalmár-Nagy 4

1 MTA-BME Morphodynamics Research Group, Budapest, Hungary.
2 Department of Mechanics, Materials and Structures, Faculty of Architecture, Budapest University of Technology and Economics, Budapest, Hungary.
3 Department of Hydraulic and Water Resources Engineering, Faculty of Civil Engineering, Budapest University of Technology and Economics, Budapest, Hungary.
4 Department of Fluid Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary.
@article{MMNP_2020_15_a47,
     author = {Eszter Feh\'er and Bal\'azs Havasi-T\'oth and Tam\'as Kalm\'ar-Nagy},
     title = {Hysteretic behavior of spatially coupled phase-oscillators},
     journal = {Mathematical modelling of natural phenomena},
     eid = {18},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2019029},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019029/}
}
TY  - JOUR
AU  - Eszter Fehér
AU  - Balázs Havasi-Tóth
AU  - Tamás Kalmár-Nagy
TI  - Hysteretic behavior of spatially coupled phase-oscillators
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019029/
DO  - 10.1051/mmnp/2019029
LA  - en
ID  - MMNP_2020_15_a47
ER  - 
%0 Journal Article
%A Eszter Fehér
%A Balázs Havasi-Tóth
%A Tamás Kalmár-Nagy
%T Hysteretic behavior of spatially coupled phase-oscillators
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019029/
%R 10.1051/mmnp/2019029
%G en
%F MMNP_2020_15_a47
Eszter Fehér; Balázs Havasi-Tóth; Tamás Kalmár-Nagy. Hysteretic behavior of spatially coupled phase-oscillators. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 18. doi : 10.1051/mmnp/2019029. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019029/

[1] A. Aubret, M. Youssef, S. Sacanna, J. Palacci Targeted assembly and synchronization of self-spinning microgears Nat. Phys 2018 1114 1118

[2] M. Breakspear, S. Heitmann, A. Daffertshofer Generative models of cortical oscillations: neurobiological implications of the Kuramoto model Front. Human Neurosci 2010 190

[3] D. Cumin, C.P. Unsworth Generalising the Kuramoto model for the study of neuronal synchronisation in the brain Physica D 2007 181 196

[4] A. Cenedese and C. Favaretto, On the synchronization of spatially coupled oscillators (2015).

[5] B. Ermentrout An adaptive model for synchrony in the firefly pteroptyx malaccae J. Math. Biol 1991 571 585

[6] B. Ermentrout, J. Rinzel Beyond a pacemaker’s entrainment limit: phase walk-through Am. J. Physiol 1984 R102 R106

[7] G. Filatrella, A.H. Nielsen, N.F. Pedersen Analysis of a power grid using a Kuramoto-like model Eur. Phys. J. B 2008 485 491

[8] F.E. Hanson, Comparative studies of firefly pacemakers. Vol. 37 of Federation proceedings (1978) 2158–2164.

[9] Z. Jiang, M. Mccall Numerical simulation of a large number of coupled lasers J. Opt. Soc. Am. B 1996 155

[10] T. Kapitaniak, P. Kuzma, J. Wojewoda, K. Czolczynski, Y. Maistrenko Imperfect chimera states for coupled pendula Sci. Rep 2014 6379

[11] Y. Kuramoto International symposium on mathematical problems in mathematical physics Lect. Notes Theor. Phys 1975 420

[12] X. Li, P. Rao Synchronizing a weighted and weakly-connected Kuramoto-oscillator digraph with a pacemaker IEEE Trans. Circ. Syst. I: Regular Papers 2015 899 905

[13] S. Leonardy, G. Freymark, S. Hebener, E. Ellehauge, L. Søgaard-Andersen Coupling of protein localization and cell movements by a dynamically localized response regulator in Myxococcus xanthus EMBO J. 2007 4433 4444

[14] Y.L. Maistrenko, B. Lysyansky, C. Hauptmann, O. Burylko, P.A. Tass Multistability in the Kuramoto model with synaptic plasticity Phys. Rev. E 2007

[15] N. Motee and Q. Sun, Sparsity measures for spatially decayingsystems (2014).

[16] R.K. Niyogi, L.Q. English Learning-rate-dependent clustering and self-development in a network of coupled phase oscillators Phys. Rev. E 2009

[17] G. Ódor, B. Hartmann Heterogeneity effects in power grid network models Phys. Rev. E 2018 022305

[18] S. Olmi, A. Navas, S. Boccaletti, A. Torcini Hysteretic transitions in the Kuramoto model with inertia Phys. Rev. E 2014 042905

[19] G.H Paissan, D.H Zanette Synchronization and clustering of phase oscillators with heterogeneous coupling Europhys. Lett 2007 20001

[20] T.K.D.M. Peron, P. Ji, F.A. Rodrigues, J. Kurths Effects of assortative mixing in the second-order Kuramoto model Phys. Rev. E 2015 052805

[21] M. Rohden, A. Sorge, M. Timme, D. Witthaut Self-organized synchronization in decentralized power grids Phys. Rev. Lett 2012 064101

[22] F. Salam, J. Marsden, P. Varaiya Arnold diffusion in the swing equations of a power system IEEE Trans. Circ. Syst 1984 673 688

[23] J. Sieber, T. Kalmár-Nagy Stability of a chain of phase oscillators Phys. Rev. E 2011 016227

[24] D. Shepard, A two-dimensional interpolation function for irregularly-spaced data. Proceedings ofthe 1968 23rd ACM national conference. ACM (1968) 517–524.

[25] H.A. Tanaka, A.J. Lichtenberg, S. Oishi Self-synchronization of coupled oscillators with hysteretic responses Physica D 1997 279 300

[26] B.R. Trees, V. Saranathan, D. Stroud Synchronization in disordered Josephson junction arrays: small-world connections and the Kuramoto model Phys. Rev. E 2005

[27] L. Tumash, S. Olmi, E. Schöll Effect of disorder and noise in shaping the dynamics of power grids Europhys. Lett 2018 20001

[28] B. Tóth, Nauticle: a general-purpose particle-based simulation tool. Preprint abs/1710.08259 (2018).

[29] T.J. Walker Acoustic synchrony: two mechanisms in the snowy tree cricket Science 1969 891 894

[30] H. Wu, L. Kang, Z. Liu, M. Dhamala Exact explosive synchronization transitions in Kuramoto oscillators with time-delayed coupling Sci. Rep 2018 15521

[31] C. Xu, Y. Sun, J. Gao, T. Qiu, Z. Zheng, S. Guan Synchronization of phase oscillators with frequency-weighted coupling Sci. Rep 2016 21926

[32] D. Yuan, F. Lin, L. Wang, D. Liu, J. Yang, Y. Xiao Multistable states in a system of coupled phase oscillators with inertia Sci. Rep 2017 42178

Cité par Sources :