Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 14.

Voir la notice de l'article provenant de la source EDP Sciences

We present a stochastic individual-based model for the phenotypic evolution of cancer cell populations under chemotherapy. In particular, we consider the case of combination cancer therapy whereby a chemotherapeutic agent is administered as the primary treatment and an epigenetic drug is used as an adjuvant treatment. The cell population is structured by the expression level of a gene that controls cell proliferation and chemoresistance. In order to obtain an analytical description of evolutionary dynamics, we formally derive a deterministic continuum counterpart of this discrete model, which is given by a nonlocal parabolic equation for the cell population density function. Integrating computational simulations of the individual-based model with analysis of the corresponding continuum model, we perform a complete exploration of the model parameter space. We show that harsher environmental conditions and higher probabilities of spontaneous epimutation can lead to more effective chemotherapy, and we demonstrate the existence of an inverse relationship between the efficacy of the epigenetic drug and the probability of spontaneous epimutation. Taken together, the outcomes of the model provide theoretical ground for the development of anticancer protocols that use lower concentrations of chemotherapeutic agents in combination with epigenetic drugs capable of promoting the re-expression of epigenetically regulated genes.
DOI : 10.1051/mmnp/2019027

Rebecca E.A. Stace 1 ; Thomas Stiehl 2 ; Mark A.J. Chaplain 1 ; Anna Marciniak-Czochra 3 ; Tommaso Lorenzi 1

1 School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK.
2 Institute of Applied Mathematics, Im Neuenheimer Feld 205, Heidelberg University, 69120 Heidelberg, Germany.
3 Institute of Applied Mathematics, BIOQUANT and IWR, Im Neuenheimer Feld 205, Heidelberg University, 69120 Heidelberg, Germany.
@article{MMNP_2020_15_a37,
     author = {Rebecca E.A. Stace and Thomas Stiehl and Mark A.J. Chaplain and Anna Marciniak-Czochra and Tommaso Lorenzi},
     title = {Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy},
     journal = {Mathematical modelling of natural phenomena},
     eid = {14},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2019027},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019027/}
}
TY  - JOUR
AU  - Rebecca E.A. Stace
AU  - Thomas Stiehl
AU  - Mark A.J. Chaplain
AU  - Anna Marciniak-Czochra
AU  - Tommaso Lorenzi
TI  - Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019027/
DO  - 10.1051/mmnp/2019027
LA  - en
ID  - MMNP_2020_15_a37
ER  - 
%0 Journal Article
%A Rebecca E.A. Stace
%A Thomas Stiehl
%A Mark A.J. Chaplain
%A Anna Marciniak-Czochra
%A Tommaso Lorenzi
%T Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019027/
%R 10.1051/mmnp/2019027
%G en
%F MMNP_2020_15_a37
Rebecca E.A. Stace; Thomas Stiehl; Mark A.J. Chaplain; Anna Marciniak-Czochra; Tommaso Lorenzi. Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 14. doi : 10.1051/mmnp/2019027. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019027/

[1] N. Ahuja, A.R. Sharma, S.B. Baylin Epigenetic therapeutics: a new weapon in the war against cancer Annu. Rev. Med 2016 73 89

[2] L. Almeida, P. Bagnerini, G. Fabrini, B.D. Hughes, T. Lorenzi Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured model ESAIM: M2AN 2019 1157 1190

[3] P.M. Altrock, L.L. Liu, F. Michor The mathematics of cancer: integrating quantitative models Nat. Rev. Cancer 2015 730

[4] A.R. Anderson, M. Chaplain Continuous and discrete mathematical models of tumor-induced angiogenesis Bull. Math. Biol 1998 857 899

[5] A.R. Anderson, V. Quaranta Integrative mathematical oncology Nat. Rev. Cancer 2008 227

[6] A.R.A. Anderson, P.K. Maini Mathematical oncology Bull. Math. Biol 2018 945 953

[7] N. Beerenwinkel, C.D. Greenman, J. Lagergren Computational cancer biology: an evolutionary perspective PLOS Comput. Biol 2016 e1004717

[8] M.V. Blagosklonny Target for cancer therapy: proliferating cells or stem cells Leukemia 2006 385 391

[9] A. Bouchnita, F.-E. Belmaati, R. Aboulaich, M. Koury, V. Volpert A hybrid computation model to describe the progression of multiple myeloma and its intra-clonal heterogeneity Computation 2017 16

[10] A. Bouchnita, N. Eymard, T.K. Moyo, M.J. Koury, V. Volpert Bone marrow infiltration by multiple myeloma causes anemia by reversible disruption of erythropoiesis Am. J. Hematol 2016 371 378

[11] I. Bozic, B. Allen, M. A. Nowak Dynamics of targeted cancer therapy Trends Mol. Med 2012 311 316

[12] I. Bozic, J.G. Reiter, B. Allen, T. Antal, K. Chatterjee, P. Shah, Y.S. Moon, A. Yaqubie, N. Kelly, D.T. Le Evolutionary dynamicsof cancer in response to targeted combination therapy Elife 2013 e00747

[13] A. Brock, H. Chang, S. Huang Non-genetic heterogeneity—a mutation-independent driving force for the somatic evolution of tumours Nat. Rev. Genet 2009 336 342

[14] R. Brown, E. Curry, L. Magnani, C. S. Wilhelm-Benartzi, J. Borley Poised epigenetic states and acquired drug resistance in cancer Nat. Rev. Cancer 2014 747

[15] A.E. Burgess, T. Lorenzi, P.G. Schofield, S.F. Hubbard, M.A. Chaplain Examining the role of individual movement in promoting coexistence in a spatially explicit prisoner’s dilemma J. Theor. Biol 2017 323 332

[16] A.E. Burgess, P.G. Schofield, S.F. Hubbard, M.A. Chaplain, T. Lorenzi Dynamical patterns of coexisting strategies in a hybrid discrete-continuum spatial evolutionary game model MMNP 2016 49 64

[17] H.M. Byrne Dissecting cancer through mathematics: from the cell to the animal model Nat. Rev. Cancer 2010 221 230

[18] K. Camphausen, P.J. Tofilon Inhibition of histone deacetylation: a strategy for tumor radiosensitization J. Clin. Oncol 2007 4051 4056

[19] N. Champagnat, R. Ferrière, G. Ben Arous The canonical equation of adaptive dynamics: a mathematical view Selection 2002 73 83

[20] N. Champagnat, R. Ferrière, S. Méléard Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models Theor. Populat. Biol 2006 297 321

[21] W. Chen, T.K. Cooper, C.A. Zahnow, M. Overholtzer, Z. Zhao, M. Ladanyi, J.E. Karp, N. Gokgoz, J.S. Wunder, I.L. Andrulis, A.J. Levine, J.L. Mankowski, S.B. Baylin Epigenetic and genetic loss of hic1 function accentuates the role of p53 in tumorigenesis Cancer Cell 2004 387 398

[22] R.H. Chisholm, T. Lorenzi, J. Clairambault Cell population heterogeneity and evolution towards drug resistance in cancer: biological and mathematical assessment, theoretical treatment optimisation Biochim. Biophys. Acta 2016 2627 2645

[23] R.H. Chisholm, T. Lorenzi, L. Desvillettes, B.D. Hughes Evolutionary dynamics of phenotype-structured populations: from individual-level mechanisms to population-level consequences Z. Angew. Math. Phys 2016 1 34

[24] R.H. Chisholm, T. Lorenzi, A. Lorz Effects of an advection term in nonlocal lotka–volterra equations Commun. Math. Sci 2016 1181 1188

[25] R.H. Chisholm, T. Lorenzi, A. Lorz, A.K. Larsen, L.N. De Almeida, A. Escargueil, J. Clairambault Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, nongenetic instability and stress-induced adaptation Cancer Res 2015 930 939

[26] H. Cho, D. Levy Modeling the dynamics of heterogeneity of solid tumors in response to chemotherapy Bull. Math. Biol 2017 2986 3012

[27] H. Cho, D. Levy Modeling the chemotherapy-induced selection of drug-resistant traits during tumor growth J. Theor. Biol 2018 120 134

[28] D.D. De Carvalho, S. Sharma, J.S. You, S.-F. Su, P.C. Taberlay, T.K. Kelly, X. Yang, G. Liang, P.A. Jones DNA methylation screening identifies driver epigenetic events of cancer cell survival Cancer Cell 2012 655 667

[29] M. Delitala, T. Lorenzi A mathematical model for the dynamics of cancer hepatocytes under therapeutic actions J. Theor. Biol 2012 88 102

[30] M. Esteller Epigenetics in cancer N. Engl. J. Med 2008 1148 1159

[31] N. Eymard, V. Volpert, P. Kurbatova, V. Volpert, N. Bessonov, K. Ogungbenro, L. Aarons, P. Janiaud, P. Nony, A. Bajard Mathematical model of t-cell lymphoblastic lymphoma: disease, treatment, cure or relapse of a virtual cohort of patients Math. Med. Biol 2016 25 47

[32] A.P. Feinberg, M.A. Koldobskiy, A. Göndör Epigenetic modulators, modifiers and mediators in cancer aetiology and progression Nat. Rev. Genet 2016 284

[33] A.P. Feinberg, B. Tycko The history of cancer epigenetics Nat. Rev. Cancer 2004 143

[34] L.C. Franssen, T. Lorenzi, A.E. Burgess, M.A. Chaplain A mathematical framework for modelling the metastatic spread of cancer Bull. Math. Biol 2018 1 46

[35] A. Ganesan Epigenetic drug discovery: a success story for cofactor interference Philos. Trans. R. Soc. B: Biol. Sci 2018 20170069

[36] R.A. Gatenby, P.K. Maini Mathematical oncology: cancer summed up Nature 2003 321

[37] R.A. Gatenby, A.S. Silva, R.J. Gillies, B.R. Frieden Adaptive therapy Cancer Res. 2009 4894 4903

[38] R. Glasspool, J.M. Teodoridis, R. Brown Epigenetics as a mechanism driving polygenic clinical drug resistance Br. J. Cancer 2006 1087 1092

[39] M. Greaves, C.C. Maley Clonal evolution in cancer Nature 2012 306 313

[40] S. Hamis, P. Nithiarasu, G.G. Powathil What does not kill a tumour may make it stronger: in silico insights into chemotherapeutic drug resistance J. Theor. Biol 2018 253 267

[41] S. Heerboth, K. Lapinska, N. Snyder, M. Leary, S. Rollinson, S. Sarkar Use of epigenetic drugs in disease: an overview Genet. Epigenet 2014 9

[42] G. Housman, S. Byler, S. Heerboth, K. Lapinska, M. Longacre, N. Snyder, S. Sarkar Drug resistance in cancer: an overview Cancers 2014 1769 1792

[43] S. Huang Genetic and non-genetic instability in tumor progression: link between the fitness landscape and the epigenetic landscape of cancer cells Cancer Metas. Rev 2013 423 448

[44] P.A. Jones, P.W. Laird Cancer-epigenetics comes of age Nat. Genet 1999 163

[45] M.R. Junttila, F.J. De Sauvage Influence of tumour micro-environment heterogeneity on therapeutic response Nature 2013 346 354

[46] K.S. Korolev, J.B. Xavier, J. Gore Turning ecology and evolution against cancer Nat. Rev. Cancer 2014 371

[47] S. Kumar, R.K. Srivastav, D.W. Wilkes, T. Ross, S. Kim, J. Kowalski, S. Chatla, Q. Zhang, A. Nayak, M. Guha Estrogen-dependent dll1-mediated notch signaling promotes luminal breast cancer Oncogene 2018 1

[48] P. Kurbatova, S. Bernard, N. Bessonov, F. Crauste, I. Demin, C. Dumontet, S. Fischer, V. Volpert Hybrid model of erythropoiesis and leukemia treatment with cytosine arabinoside SIAM J. Appl. Math 2011 2246 2268

[49] A.A. Lane, B.A. Chabner Histone deacetylase inhibitors in cancer therapy J. Clin. Oncol 2009 5459 5468

[50] O. Lavi, J.M. Greene, D. Levy, M.M. Gottesman The role of cell density and intratumoral heterogeneity in multidrug resistance Cancer Res 2013 7168 7175

[51] O. Lavi, J.M. Greene, D. Levy, M.M. Gottesman Simplifying the complexity of resistance heterogeneity in metastasis Trends Molec. Med 2014 129 136

[52] T. Lorenzi, R.H. Chisholm, J. Clairambault Tracking the evolution of cancer cell populations through the mathematical lens of phenotype-structured equations Biol. Direct 2016 43

[53] T. Lorenzi, R.H. Chisholm, L. Desvillettes, B.D. Hughes Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments J. Theor. Biol 2015 166 176

[54] T. Lorenzi, C. Venkataraman, A. Lorz, M.A. Chaplain The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity J. Theor. Biol 2018 101 110

[55] A. Lorz, T. Lorenzi, J. Clairambault, A. Escargueil, B. Perthame Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors Bull. Math. Biol 2015 1 22

[56] A. Lorz, T. Lorenzi, M.E. Hochberg, J. Clairambault, B. Perthame Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies ESAIM: M2AN 2013 377 399

[57] D.E. Matei, K.P. Nephew Epigenetic therapies for chemoresensitization of epithelial ovarian cancer Gynecolog. Oncol 2010 195 201

[58] L.M. Merlo, J.W. Pepper, B.J. Reid, C.C. Maley Cancer as an evolutionary and ecological process Nat. Rev. Cancer 2006 924 935

[59] J. Miller, Parabolic cylinder functions, in Handbook of Mathematical Functions, U.S. Government Printing Office, Washington, DC (1964) 686–720.

[60] R.L. Momparler Cancer epigenetics Oncogene 2003 6479

[61] P.C. Nowell The clonal evolution of tumor cell populations Science 1976 23 28

[62] A. Olivier, C. Pouchol Combination of direct methods and homotopy in numerical optimal control: application to the optimization of chemotherapy in cancer J. Optim. Theory Appl 2018

[63] J. Otwinowski, J.B. Plotkin Inferring fitness landscapes by regression produces biased estimates of epistasis Proc. Natl. Acad. Sci 2014 E2301 E2309

[64] P. Peltomäki Mutations and epimutations in the origin of cancer Exp. Cell Res 2012 299 310

[65] B. Perthame, Transport equations in biology, Birkhäuser, Basel, 2006.

[66] S.X. Pfister, A. Ashworth Marked for death: targeting epigenetic changes in cancer Nat. Rev. Drug Disc 2017 241

[67] G. Piazzi, L. Fini, M. Selgrad, M. Garcia, Y. Daoud, T. Wex, P. Malfertheiner, A. Gasbarrini, M. Romano, R.L. Meyer Epigenetic regulation of delta-like controls notch activation in gastric cancer Oncotarget 2011 1291

[68] A. Pisco, S. Huang Non-genetic cancer cell plasticity and therapy-induced stemness in tumour relapse:‘what does not kill me strengthens me’ Br. J. Cancer 2015 1725 1732

[69] A.O. Pisco, A. Brock, J. Zhou, A. Moor, M. Mojtahedi, D. Jackson, S. Huang Non-darwinian dynamics in therapy-induced cancer drug resistance Nat. Commun 2013 2467

[70] F.J. Poelwijk, D.J. Kiviet, D.M. Weinreich, S.J. Tans Empirical fitness landscapes reveal accessible evolutionary paths Nature 2007 383

[71] C. Pouchol, J. Clairambault, A. Lorz, E. Trélat Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy J. Math. Pures Appl 2018 268 308

[72] Y. Pu, F. Zhao, H. Wang, S. Cai Mir-34a-5p promotes multi-chemoresistance of osteosarcoma through down-regulation of the dll gene Sci. Reports 2017 44218

[73] D.F. Quail, J.A. Joyce Microenvironmental regulation of tumor progression and metastasis Nat. Med 2013 1423 1437

[74] S. Sarkar, G. Horn, K. Moulton, A. Oza, S. Byler, S. Kokolus, M. Longacre Cancer development, progression and therapy: an epigenetic overview Int. J. Mol. Sci 2013 21087 21113

[75] P. Schofield, M. Chaplain, S. Hubbard Mathematical modelling of host–parasitoid systems: effects of chemically mediated parasitoid foraging strategies on within-and between-generation spatio-temporal dynamics J. Theor. Biol 2002 31 47

[76] P.G. Schofield, M.A. Chaplain, S.F. Hubbard Dynamic heterogeneous spatio-temporal pattern formation in host-parasitoid systems with synchronised generations J. Math. Biol 2005 559 583

[77] A. Sharma, E.Y. Cao, V. Kumar, X. Zhang, H.S. Leong, A.M.L. Wong, N. Ramakrishnan, M. Hakimullah, H.M.V. Teo, F.T. Chong Longitudinal single-cell RNA sequencing of patient-derived primary cells reveals drug-induced infidelity in stem cell hierarchy Nat. Commun. 2018 4931

[78] S. Sharma, T.K. Kelly, P.A. Jones Epigenetics in cancer Carcinogenesis 2010 27 36

[79] S.V. Sharma, D.Y. Lee, B. Li, M.P. Quinlan, F. Takahashi, S. Maheswaran, U. Mcdermott, N. Azizian, L. Zou, M.A. Fischbach A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations Cell 2010 69 80

[80] A.S. Silva, Y. Kam, Z.P. Khin, S.E. Minton, R.J. Gillies, R.A. Gatenby Evolutionary approaches to prolong progression-free survival in breast cancer Cancer Res 2012 6362 6370

[81] V. Singh, P. Sharma, N. Capalash DNA methyltransferase-1 inhibitors as epigenetic therapy for cancer Curr. Cancer Drug Targets 2013 379 399

[82] G. Steel, L. Lamerton The growth rate of human tumours Br. J. Cancer 1966 74

[83] Y. Tamori, W.-M. Deng Cell competition and its implications for development and cancer J. Genetics Genom 2011 483 495

[84] N. Temme, Parabolic cylinder functions, NIST Handbook of Mathematical Functions (2010) 303–319.

[85] F. Thomas, D. Fisher, P. Fort, J.-P. Marie, S. Daoust, B. Roche, C. Grunau, C. Cosseau, G. Mitta, S. Baghdiguian Applyingecological and evolutionary theory to cancer: a long and winding road Evol. Appl 2013 1 10

[86] O. Trédan, C.M. Galmarini, K. Patel, I.F. Tannock Drug resistance and the solid tumor microenvironment J. Natl. Cancer Inst 2007 1441 1454

[87] H.-C. Tsai, S.B. Baylin Cancer epigenetics: linking basic biology to clinical medicine Cell Res 2011 502

[88] L. Wagstaff, G. Kolahgar, E. Piddini Competitive cell interactions in cancer: a cellular tug of war Trends Cell Biol 2013 160 167

[89] C.B. Yoo, P.A. Jones Epigenetic therapy of cancer: past, present and future Nat. Rev. Drug Discov 2006 37 50

[90] H. Zhang, S. Pandey, M. Travers, H. Sun, G. Morton, J. Madzo, W. Chung, J. Khowsathit, O. Perez-Leal, C.A. Barrero Targeting cdk9 reactivates epigenetically silenced genes in cancer Cell 2018 1244 1258

Cité par Sources :