Voir la notice de l'article provenant de la source EDP Sciences
Rebecca E.A. Stace 1 ; Thomas Stiehl 2 ; Mark A.J. Chaplain 1 ; Anna Marciniak-Czochra 3 ; Tommaso Lorenzi 1
@article{MMNP_2020_15_a37, author = {Rebecca E.A. Stace and Thomas Stiehl and Mark A.J. Chaplain and Anna Marciniak-Czochra and Tommaso Lorenzi}, title = {Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy}, journal = {Mathematical modelling of natural phenomena}, eid = {14}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2019027}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019027/} }
TY - JOUR AU - Rebecca E.A. Stace AU - Thomas Stiehl AU - Mark A.J. Chaplain AU - Anna Marciniak-Czochra AU - Tommaso Lorenzi TI - Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019027/ DO - 10.1051/mmnp/2019027 LA - en ID - MMNP_2020_15_a37 ER -
%0 Journal Article %A Rebecca E.A. Stace %A Thomas Stiehl %A Mark A.J. Chaplain %A Anna Marciniak-Czochra %A Tommaso Lorenzi %T Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019027/ %R 10.1051/mmnp/2019027 %G en %F MMNP_2020_15_a37
Rebecca E.A. Stace; Thomas Stiehl; Mark A.J. Chaplain; Anna Marciniak-Czochra; Tommaso Lorenzi. Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 14. doi : 10.1051/mmnp/2019027. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019027/
[1] Epigenetic therapeutics: a new weapon in the war against cancer Annu. Rev. Med 2016 73 89
, ,[2] Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured model ESAIM: M2AN 2019 1157 1190
, , , ,[3] The mathematics of cancer: integrating quantitative models Nat. Rev. Cancer 2015 730
, ,[4] Continuous and discrete mathematical models of tumor-induced angiogenesis Bull. Math. Biol 1998 857 899
,[5] Integrative mathematical oncology Nat. Rev. Cancer 2008 227
,[6] Mathematical oncology Bull. Math. Biol 2018 945 953
,[7] Computational cancer biology: an evolutionary perspective PLOS Comput. Biol 2016 e1004717
, ,[8] Target for cancer therapy: proliferating cells or stem cells Leukemia 2006 385 391
[9] A hybrid computation model to describe the progression of multiple myeloma and its intra-clonal heterogeneity Computation 2017 16
, , , ,[10] Bone marrow infiltration by multiple myeloma causes anemia by reversible disruption of erythropoiesis Am. J. Hematol 2016 371 378
, , , ,[11] Dynamics of targeted cancer therapy Trends Mol. Med 2012 311 316
, ,[12] Evolutionary dynamicsof cancer in response to targeted combination therapy Elife 2013 e00747
, , , , , , , , ,[13] Non-genetic heterogeneity—a mutation-independent driving force for the somatic evolution of tumours Nat. Rev. Genet 2009 336 342
, ,[14] Poised epigenetic states and acquired drug resistance in cancer Nat. Rev. Cancer 2014 747
, , , ,[15] Examining the role of individual movement in promoting coexistence in a spatially explicit prisoner’s dilemma J. Theor. Biol 2017 323 332
, , , ,[16] Dynamical patterns of coexisting strategies in a hybrid discrete-continuum spatial evolutionary game model MMNP 2016 49 64
, , , ,[17] Dissecting cancer through mathematics: from the cell to the animal model Nat. Rev. Cancer 2010 221 230
[18] Inhibition of histone deacetylation: a strategy for tumor radiosensitization J. Clin. Oncol 2007 4051 4056
,[19] The canonical equation of adaptive dynamics: a mathematical view Selection 2002 73 83
, ,[20] Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models Theor. Populat. Biol 2006 297 321
, ,[21] Epigenetic and genetic loss of hic1 function accentuates the role of p53 in tumorigenesis Cancer Cell 2004 387 398
, , , , , , , , , , , ,[22] Cell population heterogeneity and evolution towards drug resistance in cancer: biological and mathematical assessment, theoretical treatment optimisation Biochim. Biophys. Acta 2016 2627 2645
, ,[23] Evolutionary dynamics of phenotype-structured populations: from individual-level mechanisms to population-level consequences Z. Angew. Math. Phys 2016 1 34
, , ,[24] Effects of an advection term in nonlocal lotka–volterra equations Commun. Math. Sci 2016 1181 1188
, ,[25] Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, nongenetic instability and stress-induced adaptation Cancer Res 2015 930 939
, , , , , ,[26] Modeling the dynamics of heterogeneity of solid tumors in response to chemotherapy Bull. Math. Biol 2017 2986 3012
,[27] Modeling the chemotherapy-induced selection of drug-resistant traits during tumor growth J. Theor. Biol 2018 120 134
,[28] DNA methylation screening identifies driver epigenetic events of cancer cell survival Cancer Cell 2012 655 667
, , , , , , , ,[29] A mathematical model for the dynamics of cancer hepatocytes under therapeutic actions J. Theor. Biol 2012 88 102
,[30] Epigenetics in cancer N. Engl. J. Med 2008 1148 1159
[31] Mathematical model of t-cell lymphoblastic lymphoma: disease, treatment, cure or relapse of a virtual cohort of patients Math. Med. Biol 2016 25 47
, , , , , , , , ,[32] Epigenetic modulators, modifiers and mediators in cancer aetiology and progression Nat. Rev. Genet 2016 284
, ,[33] The history of cancer epigenetics Nat. Rev. Cancer 2004 143
,[34] A mathematical framework for modelling the metastatic spread of cancer Bull. Math. Biol 2018 1 46
, , ,[35] Epigenetic drug discovery: a success story for cofactor interference Philos. Trans. R. Soc. B: Biol. Sci 2018 20170069
[36] Mathematical oncology: cancer summed up Nature 2003 321
,[37] Adaptive therapy Cancer Res. 2009 4894 4903
, , ,[38] Epigenetics as a mechanism driving polygenic clinical drug resistance Br. J. Cancer 2006 1087 1092
, ,[39] Clonal evolution in cancer Nature 2012 306 313
,[40] What does not kill a tumour may make it stronger: in silico insights into chemotherapeutic drug resistance J. Theor. Biol 2018 253 267
, ,[41] Use of epigenetic drugs in disease: an overview Genet. Epigenet 2014 9
, , , , ,[42] Drug resistance in cancer: an overview Cancers 2014 1769 1792
, , , , , ,[43] Genetic and non-genetic instability in tumor progression: link between the fitness landscape and the epigenetic landscape of cancer cells Cancer Metas. Rev 2013 423 448
[44] Cancer-epigenetics comes of age Nat. Genet 1999 163
,[45] Influence of tumour micro-environment heterogeneity on therapeutic response Nature 2013 346 354
,[46] Turning ecology and evolution against cancer Nat. Rev. Cancer 2014 371
, ,[47] Estrogen-dependent dll1-mediated notch signaling promotes luminal breast cancer Oncogene 2018 1
, , , , , , , , ,[48] Hybrid model of erythropoiesis and leukemia treatment with cytosine arabinoside SIAM J. Appl. Math 2011 2246 2268
, , , , , , ,[49] Histone deacetylase inhibitors in cancer therapy J. Clin. Oncol 2009 5459 5468
,[50] The role of cell density and intratumoral heterogeneity in multidrug resistance Cancer Res 2013 7168 7175
, , ,[51] Simplifying the complexity of resistance heterogeneity in metastasis Trends Molec. Med 2014 129 136
, , ,[52] Tracking the evolution of cancer cell populations through the mathematical lens of phenotype-structured equations Biol. Direct 2016 43
, ,[53] Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments J. Theor. Biol 2015 166 176
, , ,[54] The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity J. Theor. Biol 2018 101 110
, , ,[55] Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors Bull. Math. Biol 2015 1 22
, , , ,[56] Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies ESAIM: M2AN 2013 377 399
, , , ,[57] Epigenetic therapies for chemoresensitization of epithelial ovarian cancer Gynecolog. Oncol 2010 195 201
,[58] Cancer as an evolutionary and ecological process Nat. Rev. Cancer 2006 924 935
, , ,[59] J. Miller, Parabolic cylinder functions, in Handbook of Mathematical Functions, U.S. Government Printing Office, Washington, DC (1964) 686–720.
[60] Cancer epigenetics Oncogene 2003 6479
[61] The clonal evolution of tumor cell populations Science 1976 23 28
[62] Combination of direct methods and homotopy in numerical optimal control: application to the optimization of chemotherapy in cancer J. Optim. Theory Appl 2018
,[63] Inferring fitness landscapes by regression produces biased estimates of epistasis Proc. Natl. Acad. Sci 2014 E2301 E2309
,[64] Mutations and epimutations in the origin of cancer Exp. Cell Res 2012 299 310
[65] B. Perthame, Transport equations in biology, Birkhäuser, Basel, 2006.
[66] Marked for death: targeting epigenetic changes in cancer Nat. Rev. Drug Disc 2017 241
,[67] Epigenetic regulation of delta-like controls notch activation in gastric cancer Oncotarget 2011 1291
, , , , , , , , ,[68] Non-genetic cancer cell plasticity and therapy-induced stemness in tumour relapse:‘what does not kill me strengthens me’ Br. J. Cancer 2015 1725 1732
,[69] Non-darwinian dynamics in therapy-induced cancer drug resistance Nat. Commun 2013 2467
, , , , , ,[70] Empirical fitness landscapes reveal accessible evolutionary paths Nature 2007 383
, , ,[71] Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy J. Math. Pures Appl 2018 268 308
, , ,[72] Mir-34a-5p promotes multi-chemoresistance of osteosarcoma through down-regulation of the dll gene Sci. Reports 2017 44218
, , ,[73] Microenvironmental regulation of tumor progression and metastasis Nat. Med 2013 1423 1437
,[74] Cancer development, progression and therapy: an epigenetic overview Int. J. Mol. Sci 2013 21087 21113
, , , , , ,[75] Mathematical modelling of host–parasitoid systems: effects of chemically mediated parasitoid foraging strategies on within-and between-generation spatio-temporal dynamics J. Theor. Biol 2002 31 47
, ,[76] Dynamic heterogeneous spatio-temporal pattern formation in host-parasitoid systems with synchronised generations J. Math. Biol 2005 559 583
, ,[77] Longitudinal single-cell RNA sequencing of patient-derived primary cells reveals drug-induced infidelity in stem cell hierarchy Nat. Commun. 2018 4931
, , , , , , , , ,[78] Epigenetics in cancer Carcinogenesis 2010 27 36
, ,[79] A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations Cell 2010 69 80
, , , , , , , , ,[80] Evolutionary approaches to prolong progression-free survival in breast cancer Cancer Res 2012 6362 6370
, , , , ,[81] DNA methyltransferase-1 inhibitors as epigenetic therapy for cancer Curr. Cancer Drug Targets 2013 379 399
, ,[82] The growth rate of human tumours Br. J. Cancer 1966 74
,[83] Cell competition and its implications for development and cancer J. Genetics Genom 2011 483 495
,[84] N. Temme, Parabolic cylinder functions, NIST Handbook of Mathematical Functions (2010) 303–319.
[85] Applyingecological and evolutionary theory to cancer: a long and winding road Evol. Appl 2013 1 10
, , , , , , , , ,[86] Drug resistance and the solid tumor microenvironment J. Natl. Cancer Inst 2007 1441 1454
, , ,[87] Cancer epigenetics: linking basic biology to clinical medicine Cell Res 2011 502
,[88] Competitive cell interactions in cancer: a cellular tug of war Trends Cell Biol 2013 160 167
, ,[89] Epigenetic therapy of cancer: past, present and future Nat. Rev. Drug Discov 2006 37 50
,[90] Targeting cdk9 reactivates epigenetically silenced genes in cancer Cell 2018 1244 1258
, , , , , , , , ,Cité par Sources :