Voir la notice de l'article provenant de la source EDP Sciences
Angélique Stéphanou 1 ; Pascal Ballet 2 ; Gibin Powathil 3
@article{MMNP_2020_15_a60, author = {Ang\'elique St\'ephanou and Pascal Ballet and Gibin Powathil}, title = {Hybrid data-based modelling in oncology: successes, challenges and hopes}, journal = {Mathematical modelling of natural phenomena}, eid = {21}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2019026}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019026/} }
TY - JOUR AU - Angélique Stéphanou AU - Pascal Ballet AU - Gibin Powathil TI - Hybrid data-based modelling in oncology: successes, challenges and hopes JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019026/ DO - 10.1051/mmnp/2019026 LA - en ID - MMNP_2020_15_a60 ER -
%0 Journal Article %A Angélique Stéphanou %A Pascal Ballet %A Gibin Powathil %T Hybrid data-based modelling in oncology: successes, challenges and hopes %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019026/ %R 10.1051/mmnp/2019026 %G en %F MMNP_2020_15_a60
Angélique Stéphanou; Pascal Ballet; Gibin Powathil. Hybrid data-based modelling in oncology: successes, challenges and hopes. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 21. doi : 10.1051/mmnp/2019026. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019026/
[1] Personalizing oncology treatments by predicting drug efficacy, side-effects, and improved therapy: mathematics, statistics, and their integration Wiley Interdiscip. Rev. Syst. Biol. Med 2014 239 253
, ,[2] The biology and mathematical modelling of glioma invasion: a review J. Roy. Soc. Interface 2017 20170490
, , , , , , ,[3] The mathematics of cancer: integrating quantitative models Nat. Rev. Cancer 2015 730 745
, ,[4] Integrating intracellular dynamics using compucell3d and bionetsolver: applications to multiscale modelling of cancer cell growth and invasion PLOS ONE 2012 1 17
, , ,[5] Mathematical oncology Bull. Math. Biol 2018 945 953
,[6] From patient-specific mathematical neuro-oncology to precision medicine Front. Oncol 2013 62
, , , , , , , , , , ,[7] Physiologically based mathematical models to optimize therapies against metastatic colorectal cancer: a mini-review Curr. Pharmaceut. Des 2014 37 48
,[8] Multiscale design of cell-type specific pharmacokinetic/ pharmacodynamic models for personalized medicine: application to temozolomide in brain tumors CPT Pharmacometr. Syst. Pharmacol 2014 e112
, , , ,[9] Systems chronotherapeutics Pharmacolog. Rev 2017 161 199
, , , ,[10] P. Ballet, SimCells, an advanced software for multicellular modeling: application to tumoral and blood vessel co-development, Working paper (unpublished) (2018).
[11] Computational oncology-mathematical modelling of drug regimens for precision medicine Nat. Rev. Clin. Oncol 2016 242 254
, , , ,[12] Homeostasis back and forth: an ecoevolutionary perspective of cancer Cold Spring Harbor Perspect. Med 2017 a028332
,[13] Smt or toft? How the two main theories of carcinogenesis are made (artificially) incompatible Acta Biotheor 2015 257 267
,[14] Smt and toft integrable after all: a reply to bizzarri and cucina Acta Biotheor 2017 81 85
,[15] Smt and toft: why and how they are opposite and incompatible paradigms Acta Biotheor 2016 221 239
,[16] Physiologically based pharmacokinetic and pharmacodynamic modeling in cancer drug development: status, potential and gaps Exp. Opin. Drug Metab. Toxicol 2015 743 756
[17] Bone marrow infiltration by multiple myeloma causes anemia by reversible disruption of erythropoiesis Am. J. Hematol 2016 371 378
, , , ,[18] A hybrid computation model to describe the progression of multiple myeloma and its intra-clonal heterogeneity Computation 2017 16
, , , ,[19] Combining radiation with hyperthermia: a multiscale model informed by in vitro experiments J. Roy. Soc. Interface 2018 20170681
, , , , , , , ,[20] Towards the design of a patient-specific virtual tumour Comput. Math. Methods Med 2016 7851789
, , , ,[21] Current mathematical models for cancer drug discovery Exp. Opin. Drug Discov 2017 785 799
, , , , ,[22] The mathematical modelling of tumour angiogenesis and invasion Acta Biotheor 1995 387 402
[23] Patient specific image driven evaluation of the aggressiveness of metastases to the lung Med. Image Comput. Comput. Assist Interv 2014 553 560
, , , ,[24] Predictive computational modeling to define effective treatment strategies for bone metastatic prostate cancer Sci. Rep 2016 29384
, , , , ,[25] Availability of evidence of benefits on overall survival and quality of life of cancer drugs approved by European medicines agency: retrospective cohort study of drug approvals 2009–13 BMJ 2017 j4530
, , , ,[26] Simulating cancer: computational models in oncology Front. Oncol 2013 233
,[27] Organs-on-chips at the frontiers of drug discovery Nat. Rev. Drug Discov 2015 248 260
, ,[28] P. Nony and CRESim project group, Mathematical model of t-cell lymphoblastic lymphoma: disease, treatment, cure or relapse of a virtual cohort of patients Math. Med. Biol 2018 25 47
, , , , , , , , , , , , ,[29] Evolution of acquired resistance to anti-cancer therapy J. Theor. Biol 2014 10 20
,[30] Spatial heterogeneity and evolutionary dynamics modulate time to recurrence in continuous and adaptive cancer therapies Cancer Res 2018 2127 2139
, , , ,[31] Pharmacokinetic/pharmacodynamic modeling for drug development in oncology Am. Soc. Clin. Oncol. Annu. Meet 2017 210 215
, ,[32] Evolution of cell motility in an individual-based model of tumour growth J. Theor. Biol 2009 67 83
,[33] PhysiCell: an open source physics-based cell simulator for 3-D multicellular systems PLoS Comput. Biol 2018 e1005991
, , , ,[34] N. Glade and A. Stéphanou, Le vivant discret et continu – Modes de représentation en biologie théorique. Editions Matériologiques, Paris (2013).
[35] Simulation of biological cell sorting using a two-dimensional extended potts model Phys. Rev. Lett 1992 2013 2016
,[36] Microvessel chaste: an open library for spatial modeling of vascularized tissue Biophys. J 2017 1767 1772
, , , , , ,[37] What does not kill a tumour may make it stronger: in silico insights into chemotherapeutic drug resistance J. Theor. Biol 2018 253 267
, ,[38] High drug attrition rates: where are we going wrong? Nat. Rev. Clin. Oncol. 2011 189 190
,[39] Patient-specific mathematical neuro-oncology: using a simple proliferation and invasion tumor model to inform clinical practice Bull. Math. Biol 2015 846 856
, , , ,[40] Mathematical models of tumor cell proliferation: a review of the literature Exp. Rev. Anticancer Therapy 2018 1 16
, , , , , , , ,[41] Mathematical and computational modeling in complex biological systems BioMed Res. Int 2017 5958321
, , , ,[42] Towards personalized computational oncology: from spatial models of tumour spheroids, to organoids, to tissues J. Roy. Soc. Interface 2018 20170703
, , ,[43] Strategies of eradicating glioma cells: a multi-scale mathematical model with mir-451-ampk-mtor control PLoS ONE 2015 e0114370j
, , , , , ,[44] Can the pharmaceutical industry reduce the attrition rates? Nat. Rev. Drug Discov. 2004 711 715
,[45] Predicting outcomes of prostate cancer immunotherapy by personalized mathematical models PLOS ONE 2010 1 8
, , , , ,[46] Hybrid model of erythtropoiesis and leukemia treatment with cytosine arabinoside SIAM J. Appl. Math 2011 2246 2268
, , , , , , ,[47] Dynamics of tumor growth Br. J. Cancer 1964 490 502
[48] On the importance of the submicrovascular network in a computational model of tumour growth Microvasc. Res 2012 188 204
, , , ,[49] Solid tumor models for the assessment of different treatment modalities: I. Radiation-induced changes in growth rate characteristics of a solid tumor model Proc. Natl. Acad. Sci. U.S.A 1975 2662 2666
, , , ,[50] Patient-calibrated agent-based modelling of ductal carcinoma in situ (DCIS): from microscopic measurements to macroscopic predictions of clinical progression J. Theor. Biol 2012 122 140
, , ,[51] Progress towards computational 3-d multicellular systems biology Adv. Exp. Med. Biol 2016 225 246
, , , , , , ,[52] Simulating PDGF-driven glioma growth and invasion in an anatomically accurate brain domain Bull. Math. Biol 2018 1292 1309
, , , , , ,[53] Chaste: an open source c++ library for computational physiology and biology PLOS Comput. Biol 2013 1 8
, , , , , , , , , , , , , , , ,[54] The hitchhiker’s guide to the cancer galaxy. How two critics missed their destination Orgnisms. J. Biol. Sci. 2017 37 48
,[55] Computational screening of tip and stalk cell behavior proposes a role for apelin signaling in sprout progression PLOS ONE 2016 1 31
, , , , ,[56] Microfluidic organ/body-on-a-chip devices at the convergence of biology and microengineering Sensors (Basel, Switzerland) 2015 31142 31170
, , ,[57] Computational oncology J. Oncopathol. Clin. Res 2018
, , , , ,[58] Chaste: a test-driven approach to software development for biological modelling Comp. Phys. Commun 2009 2452 2471
, , , , , , , , , , , , , , , , , ,[59] Predicting patient-specific radiotherapy protocols based on mathematical model choice for proliferation saturation index Bull. Math. Biol 2018 1195 1206
, , , , ,[60] A computational framework to assess the efficacy of cytotoxic molecules and vascular disrupting agents against solid tumours MMNP 2012 49 77
, , , ,[61] Systems oncology: towards patient-specific treatment regimes informed by multiscale mathematical modelling Semin. Cancer Biol 2015 13 20
, ,[62] Bystander effects and their implications for clinical radiation therapy: insights from multiscale in silico experiments J. Theor. Biol 2016 1 14
, , ,[63] A proliferation saturation index to predict radiation response and personalize radiotherapy fractionation Radiat. Oncol 2015 159
, , , , , , , , ,[64] Carcinogenesis explained within the context of a theory of organisms Progr. Biophys. Molec. Biol 2016 70 76
,[65] The tissue organization field theory of cancer: a testable replacement for the somatic mutation theory BioEssays 2011 332 340
,[66] Hybrid modelling in biology: a classification review MMNP 2016 37 48
,[67] Mathematical modelling of flow in 2d and 3d vascular networks: applications to antiangiogenic and chemotherapeutic drug stategies Math. Comp. Model 2005 1137 1156
, , ,[68] How tumour-induced vascular changes alter angiogenesis: Insights from a computational model J. Theor. Biol 2017 211 226
, , , , ,[69] Systems biology, systems medicine, systems pharmacology: the what and the why Acta Biotheor 2018 345 365
, , ,[70] M.H. Swat, G.L. Thomas, J.M. Belmonte, A. Shirinifard, D. Hmeljak and J.A. Glazier, Multi-scale modeling of tissues using compucell3d. In Vol. 110 of Computational Methods in Cell Biology. Edited by Anand R. Asthagiri and Adam P. Arkin. Academic Press (2012) 325–366.
[71] An integrative computational model for intestinal tissue renewal Cell Proliferation 2009 617 636
, , , , , , , , , , , , , , , , , , , ,[72] Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model Cancer Res 2009 9133 9140
, , , , , , , , , , ,[73] Spatial modeling of drug delivery routes for treatment of disseminated ovarian cancer Cancer Res 2016 1320 1334
, , , , , , ,[74] Integrating imaging data into predictive biomathematical and biophysical models of cancer ISRN Biomath 2012
[75] Quantitative multimodality imaging in cancer research and therapy Nat. Rev. Clin. Oncol 2014 670 680
, ,[76] Multi-scale modeling in clinical oncology: opportunities and barriers to success Ann. Biomed. Eng 2016 2626 2641
, , , , , , , , , ,Cité par Sources :