Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2020_15_a29, author = {Bj\"orn Gustafsson and Mihai Putinar}, title = {Finite term relations for the exponential orthogonal polynomials}, journal = {Mathematical modelling of natural phenomena}, eid = {5}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2019025}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019025/} }
TY - JOUR AU - Björn Gustafsson AU - Mihai Putinar TI - Finite term relations for the exponential orthogonal polynomials JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019025/ DO - 10.1051/mmnp/2019025 LA - en ID - MMNP_2020_15_a29 ER -
%0 Journal Article %A Björn Gustafsson %A Mihai Putinar %T Finite term relations for the exponential orthogonal polynomials %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019025/ %R 10.1051/mmnp/2019025 %G en %F MMNP_2020_15_a29
Björn Gustafsson; Mihai Putinar. Finite term relations for the exponential orthogonal polynomials. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 5. doi : 10.1051/mmnp/2019025. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019025/
[1] Domains on which analytic functions satisfy quadrature identities J. Anal. Math 1976 39 73
,[2] On exponential representations of analytic functions in the upper half-plane with positive imaginary part J. Analyse Math 1956 321 388
,[3] Complex Jacobi Matrices J. Comp. Appl. Math 2001 17 65
[4] A. Böttcher and S.M. Grudsky, Spectral Properties of Banded Toeplitz Matrices, SIAM, Philadelphia, 2005.
[5] C.F. Dunkl and Y. Xu, Orthogonal Polynomials of Several Variables, Vol. 155 of Encyclopedia of Mathematics and its Applications, Second Edition. Cambridge Univ. Press, Cambridge (2014).
[6] Polynomials orthogonal over a curve Michigan Math. J 1965 313 316
[7] Sur les polynomes de Tchebicheff C. R. Acad. Sci. Paris 1935 2052 2053
[8] The exponential transform: a renormalized Riesz potential at crirical exponent Indiana Univ. Math. J 2003 527 568
,[9] B. Gustafsson and M. Putinar, Hyponormal Quantization of Planar Domains. Vol. 2199 of Lect. Notes Math. Springer, Cham, Switzerland (2017).
[10] A field theoretic operator model and Cowen-Douglas class Banach J. Math 2019 338 358
,[11] B. Gustafsson, R. Teoderscu and A. Vasil’ev, Classical and Stochastic Laplacian growth, Advances in Mathematical Fluid Mechanics. Birkhäuser Verlag, Basel (2014).
[12] D. Khavinson and E. Lundberg, Linear Holomorphic Partial Differential Equations and Classical Potential Theory. Vol. 232 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2018).
[13] D. Khavinson and N. Stylianopoulos, Recurrence relations for orthogonal polynomials and algebraicity of solutions of the Dirichlet problem. Around the Research of Vladimir Maz’ya II S. Partial Differential Equations. Springer, Berlin (2009) 219–228.
[14] On the “Favard Theorem” and its extensions J. Computat. Appl. Math 2001 231 254
,[15] M. Martin and M. Putinar, Lectures on Hyponormal Operators. Birkhäuser Verlag, Basel (1989).
[16] Random matrices in 2D, Laplacian growth and operator theory J. Phys. A 2008 1 74
, ,[17] Finite-term relations for planar orthogonal polynomials Compl. Anal. Oper. Theory 2007 447 456
,[18] On a minimal element for a family of bodies producing the same external gravitational field Appl. Anal 2005 649 668
, ,[19] H.S. Shapiro, The Schwarz Function and its Generalization to Higher Dimensions. In Vol. 9 of University of Arkansas Lecture Notes in the Mathematical Sciences. John Wiley Sons Inc., New York (1992).
[20] A problem concerning orthogonal polynomials Trans. Amer. Math. Soc 1935 196 206
[21] Normal random matrix ensemble as a growth problem Nucl. Phys. B 2005 407 444
, , , ,[22] A. Varchenko and P. Etingof, Why the Boundary of a Round Drop Becomes a Curve of Order Four. American Mathematical Society AMS University Lecture Series. Providence, Rhode Island (1992).
[23] Conformal maps and integrable hierarchies Comm. Math. Phys. 2000 523 538
,Cité par Sources :