Finite term relations for the exponential orthogonal polynomials
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 5.

Voir la notice de l'article provenant de la source EDP Sciences

The exponential orthogonal polynomials encode via the theory of hyponormal operators a shade function g supported by a bounded planar shape. We prove under natural regularity assumptions that these complex polynomials satisfy a three term relation if and only if the underlying shape is an ellipse carrying uniform black on white. More generally, we show that a finite term relation among these orthogonal polynomials holds if and only if the first row in the associated Hessenberg matrix has finite support. This rigidity phenomenon is in sharp contrast with the theory of classical complex orthogonal polynomials. On function theory side, we offer an effective way based on the Cauchy transforms of , to decide whether a (d + 2)-term relation among the exponential orthogonal polynomials exists; in that case we indicate how the shade function g can be reconstructed from a resulting polynomial of degree d and the Cauchy transform of g. A discussion of the relevance of the main concepts in Hele-Shaw dynamics completes the article.
DOI : 10.1051/mmnp/2019025

Björn Gustafsson 1 ; Mihai Putinar 2, 3

1 Department of Mathematics, KTH, 100 44 Stockholm, Sweden.
2 Department of Mathematics, University of California, Santa Barbara, CA 93106-3080, USA.
3 School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
@article{MMNP_2020_15_a29,
     author = {Bj\"orn Gustafsson and Mihai Putinar},
     title = {Finite term relations for the exponential orthogonal polynomials},
     journal = {Mathematical modelling of natural phenomena},
     eid = {5},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2019025},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019025/}
}
TY  - JOUR
AU  - Björn Gustafsson
AU  - Mihai Putinar
TI  - Finite term relations for the exponential orthogonal polynomials
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019025/
DO  - 10.1051/mmnp/2019025
LA  - en
ID  - MMNP_2020_15_a29
ER  - 
%0 Journal Article
%A Björn Gustafsson
%A Mihai Putinar
%T Finite term relations for the exponential orthogonal polynomials
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019025/
%R 10.1051/mmnp/2019025
%G en
%F MMNP_2020_15_a29
Björn Gustafsson; Mihai Putinar. Finite term relations for the exponential orthogonal polynomials. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 5. doi : 10.1051/mmnp/2019025. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019025/

[1] D. Aharonov, H.S. Shapiro Domains on which analytic functions satisfy quadrature identities J. Anal. Math 1976 39 73

[2] N. Aronsajn, W.F. Donoghue On exponential representations of analytic functions in the upper half-plane with positive imaginary part J. Analyse Math 1956 321 388

[3] B. Beckermann Complex Jacobi Matrices J. Comp. Appl. Math 2001 17 65

[4] A. Böttcher and S.M. Grudsky, Spectral Properties of Banded Toeplitz Matrices, SIAM, Philadelphia, 2005.

[5] C.F. Dunkl and Y. Xu, Orthogonal Polynomials of Several Variables, Vol. 155 of Encyclopedia of Mathematics and its Applications, Second Edition. Cambridge Univ. Press, Cambridge (2014).

[6] P. Duren Polynomials orthogonal over a curve Michigan Math. J 1965 313 316

[7] J. Favard Sur les polynomes de Tchebicheff C. R. Acad. Sci. Paris 1935 2052 2053

[8] B. Gustafsson, M. Putinar The exponential transform: a renormalized Riesz potential at crirical exponent Indiana Univ. Math. J 2003 527 568

[9] B. Gustafsson and M. Putinar, Hyponormal Quantization of Planar Domains. Vol. 2199 of Lect. Notes Math. Springer, Cham, Switzerland (2017).

[10] B. Gustafsson, M. Putinar A field theoretic operator model and Cowen-Douglas class Banach J. Math 2019 338 358

[11] B. Gustafsson, R. Teoderscu and A. Vasil’ev, Classical and Stochastic Laplacian growth, Advances in Mathematical Fluid Mechanics. Birkhäuser Verlag, Basel (2014).

[12] D. Khavinson and E. Lundberg, Linear Holomorphic Partial Differential Equations and Classical Potential Theory. Vol. 232 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2018).

[13] D. Khavinson and N. Stylianopoulos, Recurrence relations for orthogonal polynomials and algebraicity of solutions of the Dirichlet problem. Around the Research of Vladimir Maz’ya II S. Partial Differential Equations. Springer, Berlin (2009) 219–228.

[14] F. Marcellán, R. Álvarez-Nodarse On the “Favard Theorem” and its extensions J. Computat. Appl. Math 2001 231 254

[15] M. Martin and M. Putinar, Lectures on Hyponormal Operators. Birkhäuser Verlag, Basel (1989).

[16] M. Mineev-Weinstein, M. Putinar, R. Teodorescu Random matrices in 2D, Laplacian growth and operator theory J. Phys. A 2008 1 74

[17] M. Putinar, N. Stylianopoulos Finite-term relations for planar orthogonal polynomials Compl. Anal. Oper. Theory 2007 447 456

[18] T. Savina, B. Sternin, V. Shatalov On a minimal element for a family of bodies producing the same external gravitational field Appl. Anal 2005 649 668

[19] H.S. Shapiro, The Schwarz Function and its Generalization to Higher Dimensions. In Vol. 9 of University of Arkansas Lecture Notes in the Mathematical Sciences. John Wiley Sons Inc., New York (1992).

[20] G. Szegö A problem concerning orthogonal polynomials Trans. Amer. Math. Soc 1935 196 206

[21] R. Teodorescu, E. Bettelheim, O. Agam, A. Zabrodin, P. Wiegmann Normal random matrix ensemble as a growth problem Nucl. Phys. B 2005 407 444

[22] A. Varchenko and P. Etingof, Why the Boundary of a Round Drop Becomes a Curve of Order Four. American Mathematical Society AMS University Lecture Series. Providence, Rhode Island (1992).

[23] P. Wiegmann, A. Zabrodin Conformal maps and integrable hierarchies Comm. Math. Phys. 2000 523 538

Cité par Sources :