Tumor width on T1-weighted MRI images of glioblastoma as a prognostic biomarker: a mathematical model
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 10.

Voir la notice de l'article provenant de la source EDP Sciences

We construct a minimal macroscopic model of glioblastoma growth including necrosis to explain the recently observed correlation between MRI-observed features and tumor growth speed. A theoretical study of the modified model was carried out. In particular, we obtained an expression for the minimal wave speed of the traveling wave solutions. We also solved numerically the model using a set of realistic parameter values and used these numerical solutions to compare the model dynamics against patient’s imaging and clinical data. The mathematical model provides theoretical support to the observation that tumors with broad contrast enhancing areas as observed in T1-weighted pretreatment postcontrast magnetic resonance images have worse survival than those with thinner areas.
DOI : 10.1051/mmnp/2019022

Julián Pérez-Beteta 1 ; Juan Belmonte-Beitia 1 ; Víctor M. Pérez-García 1

1 Mathematical Oncology Laboratory (MOLAB), Departamento de Matemáticas, E. T. S. de Ingenieros Industriales and Instituto de Matemática Aplicada a la Ciencia y la Ingeniería (IMACI), Avda. Camilo José Cela 3, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain.
@article{MMNP_2020_15_a35,
     author = {Juli\'an P\'erez-Beteta and Juan Belmonte-Beitia and V{\'\i}ctor M. P\'erez-Garc{\'\i}a},
     title = {Tumor width on {T1-weighted} {MRI} images of glioblastoma as a prognostic biomarker: a mathematical model},
     journal = {Mathematical modelling of natural phenomena},
     eid = {10},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2019022},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019022/}
}
TY  - JOUR
AU  - Julián Pérez-Beteta
AU  - Juan Belmonte-Beitia
AU  - Víctor M. Pérez-García
TI  - Tumor width on T1-weighted MRI images of glioblastoma as a prognostic biomarker: a mathematical model
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019022/
DO  - 10.1051/mmnp/2019022
LA  - en
ID  - MMNP_2020_15_a35
ER  - 
%0 Journal Article
%A Julián Pérez-Beteta
%A Juan Belmonte-Beitia
%A Víctor M. Pérez-García
%T Tumor width on T1-weighted MRI images of glioblastoma as a prognostic biomarker: a mathematical model
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019022/
%R 10.1051/mmnp/2019022
%G en
%F MMNP_2020_15_a35
Julián Pérez-Beteta; Juan Belmonte-Beitia; Víctor M. Pérez-García. Tumor width on T1-weighted MRI images of glioblastoma as a prognostic biomarker: a mathematical model. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 10. doi : 10.1051/mmnp/2019022. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019022/

[1] S. Abrol Radiomic phenotyping in brain cancer to unravel hidden information in medical images. Top. Magn. Reson. Imag. 2017 43 53

[2] J.C.L. Alfonso The biology and mathematical modelling of glioma invasion: a review. J. R. Soc. Interface. 2017 20170490

[3] A. Alvarez-Arenas, J. Belmonte-Beitia, G.F. Calvo Nonlinear waves in a simple model of high-grade glioma Appl. Math. Nonlinear Sc. 2016 405 422

[4] D.G. Altman, Practical Statistics for Medical Research, 4th edn. Chapman Hall, London (1991).

[5] A. Amelot Surgical decision making from image-based biophysical modeling of glioblastoma: not ready for primetime. Neurosurgery 2017 793 799

[6] A. Baldock From patient-specific mathematical neuro-oncology to precision medicine. Front. Oncol. 2013 62

[7] A. Baldock Patient-specific metrics of invasiveness reveal significant prognostic benefit of resection in a predictable subset of gliomas. PLoS One 2014 e99057

[8] P.K. Burgess The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas. J. Neuropathol. 1997 703 740

[9] R. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, D.E. Knuth On the Lambert function. Adv. Comput. Math. 1996 329 359

[10] Y. Cui Prognostic imaging biomarkers in glioblastoma: development and independent validation on the basis of multiregion and quantitative analysis of MR images. Radiology 2016 546 553

[11] Y. Cui Volume of high-risk intratumoral subregions at multi-parametric MR imaging predicts overall survival and complements molecular analysis of glioblastoma. Eur. Radiol. 2017 3583 3592

[12] D.A. Darling The Kolmogorov-Smirnov, Cramer-von Mises Tests. J. Stat. Model. Anal. 1957 823 838

[13] B.M. Ellingson Radiogenomics and imaging phenotypes in glioblastoma: novel observations and correlation with molecular characteristics. Curr. Neurol. Neurosci. Rep. 2015 506

[14] B.M. Ellingson Emerging techniques and technologies in brain tumor imaging. Neuro. Oncol. 2014 12 23

[15] B.M. Ellingson Baseline pretreatment contrast enhancing tumor volume including central necrosis is a prognostic factor in recurrent glioblastoma: evidence from single and multicenter trials. Neuro. Oncol. 2017 89 98

[16] D.L. Evans, J.H. Drew, L.M. Leemis The distribution of the Kolmogorov-Smirnov, Cramer-von mises, and Anderson-Darling Test Statistic for exponential populations with estimated parameters. Commun. Stat. Simul. Comput. 2007 1396 1421

[17] R.J. Gillies, P.E. Kinahan, H. Hricak Radiomics: images are more than pictures, they are data Radiology. 2016 563 577

[18] M. Ingrisch Radiomic analysis reveals prognostic information in T1-weighted baseline magnetic resonance imaging in patients with glioblastoma. Invest. Radiol. 2017 360 366

[19] P. Kickingereder Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 2016 880 889

[20] R.L. Klank, S.S. Rosenfeld, D.J. Odde A Brownian dynamics tumor progression simulator with application to glioblastoma. Converg. Sci. Phys. Oncol. 2018 015001

[21] J. Lao A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci. Rep. 2017 10353

[22] Q. Li A fully-automatic multiparametric radiomics model: towards reproducible and prognostic imaging signature for prediction of overall survival in glioblastoma multiforme. Sci. Rep. 2017 14331

[23] D.N. Louis The 2007 WHO classification of tumours of the central nervous system Acta Neuropathol. 2007 97 109

[24] A. Martínez-González, G.F. Calvo, L. Pérez-Romasanta, V.M. Pérez-García Hypoxic cell waves around necrotic cores in glioblastoma: a mathematical model and its therapeutical implications. Bull. Math. Biol. 2012 2875 2896

[25] A. Martínez-González, G.F. Calvo, J.M. Ayuso, I. Ochoa, L.J. Fernández, V.M. Pérez-García Hypoxia in gliomas: opening therapeutic opportunities using a mathematical-based approach Adv. Exp. Med. Biol 2016 11 29

[26] D. Molina Geometrical measures obtained from pretreatment postcontrast T1 weighted MRIs predict survival benefits from bevacizumab in glioblastoma patients. PLoS One 2016 e0161484

[27] D. Molina, L. Vera, J. Pérez-Beteta, E. Arana and V.M. Pérez-García, Survival prediction in glioblastoma: man versus machine. Scientific Report n°5982 (2019).

[28] J. Murray, Mathematical Biology. Springer, Berlin (2003).

[29] S. Narang Radiomics in glioblastoma: current status, challenges and opportunities. Trasl. Cancer Res. 2016 383 397

[30] J. Pérez-Beteta Glioblastoma: does the pretreatment geometry matter? A postcontrast T1 MRI-based study. Eur. Radiol. 2017 163 169

[31] J. Pérez-Beteta Tumor surface regularity at MR imaging predicts survival and response to surgery in patients with glioblastoma. Radiology 2018 218 225

[32] J. Pérez-Beteta Morphological MRI-based features and extent of resection predict survival in glioblastoma. Eur. Radiol. 2019 1968 1977

[33] J. Pérez-Beteta, A. Mártinez-González, V.M. Pérez-García A three-dimensional computational analysis of magnetic resonance images characterizes the biological aggressiveness in malignant brain tumours. J. R. Soc. Interface 2018 20180503

[34] J. Pérez-Beteta Morphological features on MR images classify multiple glioblastomas in different prognostic groups. Am. J. Radiol. 2019 634 640

[35] V.M. Pérez-García, G.F. Calvo, J. Belmonte-Beitia, D. Diego, L. Pérez-Romasanta Bright solitary waves in malignant gliomas. Phys. Rev. E 2011 021921

[36] M. Protopapa Clinical implications of in silico mathematical modeling for glioblastoma: a critical review. J. Neurooncol. 2018 1 11

[37] N.M. Razali, Y.B. Wah Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model. Anal. 2011 21 33

[38] P. Sprent and N.C. Smeeton, Applied Nonparametric Statistical Methods. Chapman Hall, London (2007).

[39] S. Strogatz, Nonlinear Dynamics and Chaos: Studies in Nonlinearity. CRC Press, Boca Raton (2007).

[40] K.R. Swanson, R.C. Rostomily, E.C. Alvord A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle. Br. J. Cancer 2007 113 119

[41] V. Verma The rise of radiomics and implications for oncologic management. J. Natl. Cancer Inst. 2017

[42] C.H. Wang Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model. Cancer Res. 2009 9133 9140

[43] P. Wangaryattawanich Multicenter imaging outcomes study of the cancer genome atlas glioblastoma patient cohort: imaging predictors of overall and progression-free survival. Neuro. Oncol. 2015 1525 1537

[44] M. Zhou Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group prediction. J. Magn. Reson. Imag. 2017 115 123

Cité par Sources :