Voir la notice de l'article provenant de la source EDP Sciences
Julián Pérez-Beteta 1 ; Juan Belmonte-Beitia 1 ; Víctor M. Pérez-García 1
@article{MMNP_2020_15_a35, author = {Juli\'an P\'erez-Beteta and Juan Belmonte-Beitia and V{\'\i}ctor M. P\'erez-Garc{\'\i}a}, title = {Tumor width on {T1-weighted} {MRI} images of glioblastoma as a prognostic biomarker: a mathematical model}, journal = {Mathematical modelling of natural phenomena}, eid = {10}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2019022}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019022/} }
TY - JOUR AU - Julián Pérez-Beteta AU - Juan Belmonte-Beitia AU - Víctor M. Pérez-García TI - Tumor width on T1-weighted MRI images of glioblastoma as a prognostic biomarker: a mathematical model JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019022/ DO - 10.1051/mmnp/2019022 LA - en ID - MMNP_2020_15_a35 ER -
%0 Journal Article %A Julián Pérez-Beteta %A Juan Belmonte-Beitia %A Víctor M. Pérez-García %T Tumor width on T1-weighted MRI images of glioblastoma as a prognostic biomarker: a mathematical model %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019022/ %R 10.1051/mmnp/2019022 %G en %F MMNP_2020_15_a35
Julián Pérez-Beteta; Juan Belmonte-Beitia; Víctor M. Pérez-García. Tumor width on T1-weighted MRI images of glioblastoma as a prognostic biomarker: a mathematical model. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 10. doi : 10.1051/mmnp/2019022. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019022/
[1] Radiomic phenotyping in brain cancer to unravel hidden information in medical images. Top. Magn. Reson. Imag. 2017 43 53
[2] The biology and mathematical modelling of glioma invasion: a review. J. R. Soc. Interface. 2017 20170490
[3] Nonlinear waves in a simple model of high-grade glioma Appl. Math. Nonlinear Sc. 2016 405 422
, ,[4] D.G. Altman, Practical Statistics for Medical Research, 4th edn. Chapman Hall, London (1991).
[5] Surgical decision making from image-based biophysical modeling of glioblastoma: not ready for primetime. Neurosurgery 2017 793 799
[6] From patient-specific mathematical neuro-oncology to precision medicine. Front. Oncol. 2013 62
[7] Patient-specific metrics of invasiveness reveal significant prognostic benefit of resection in a predictable subset of gliomas. PLoS One 2014 e99057
[8] The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas. J. Neuropathol. 1997 703 740
[9] On the Lambert function. Adv. Comput. Math. 1996 329 359
, , , ,[10] Prognostic imaging biomarkers in glioblastoma: development and independent validation on the basis of multiregion and quantitative analysis of MR images. Radiology 2016 546 553
[11] Volume of high-risk intratumoral subregions at multi-parametric MR imaging predicts overall survival and complements molecular analysis of glioblastoma. Eur. Radiol. 2017 3583 3592
[12] The Kolmogorov-Smirnov, Cramer-von Mises Tests. J. Stat. Model. Anal. 1957 823 838
[13] Radiogenomics and imaging phenotypes in glioblastoma: novel observations and correlation with molecular characteristics. Curr. Neurol. Neurosci. Rep. 2015 506
[14] Emerging techniques and technologies in brain tumor imaging. Neuro. Oncol. 2014 12 23
[15] Baseline pretreatment contrast enhancing tumor volume including central necrosis is a prognostic factor in recurrent glioblastoma: evidence from single and multicenter trials. Neuro. Oncol. 2017 89 98
[16] The distribution of the Kolmogorov-Smirnov, Cramer-von mises, and Anderson-Darling Test Statistic for exponential populations with estimated parameters. Commun. Stat. Simul. Comput. 2007 1396 1421
, ,[17] Radiomics: images are more than pictures, they are data Radiology. 2016 563 577
, ,[18] Radiomic analysis reveals prognostic information in T1-weighted baseline magnetic resonance imaging in patients with glioblastoma. Invest. Radiol. 2017 360 366
[19] Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 2016 880 889
[20] A Brownian dynamics tumor progression simulator with application to glioblastoma. Converg. Sci. Phys. Oncol. 2018 015001
, ,[21] A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci. Rep. 2017 10353
[22] A fully-automatic multiparametric radiomics model: towards reproducible and prognostic imaging signature for prediction of overall survival in glioblastoma multiforme. Sci. Rep. 2017 14331
[23] The 2007 WHO classification of tumours of the central nervous system Acta Neuropathol. 2007 97 109
[24] Hypoxic cell waves around necrotic cores in glioblastoma: a mathematical model and its therapeutical implications. Bull. Math. Biol. 2012 2875 2896
, , ,[25] Hypoxia in gliomas: opening therapeutic opportunities using a mathematical-based approach Adv. Exp. Med. Biol 2016 11 29
, , , , ,[26] Geometrical measures obtained from pretreatment postcontrast T1 weighted MRIs predict survival benefits from bevacizumab in glioblastoma patients. PLoS One 2016 e0161484
[27] D. Molina, L. Vera, J. Pérez-Beteta, E. Arana and V.M. Pérez-García, Survival prediction in glioblastoma: man versus machine. Scientific Report n°5982 (2019).
[28] J. Murray, Mathematical Biology. Springer, Berlin (2003).
[29] Radiomics in glioblastoma: current status, challenges and opportunities. Trasl. Cancer Res. 2016 383 397
[30] Glioblastoma: does the pretreatment geometry matter? A postcontrast T1 MRI-based study. Eur. Radiol. 2017 163 169
[31] Tumor surface regularity at MR imaging predicts survival and response to surgery in patients with glioblastoma. Radiology 2018 218 225
[32] Morphological MRI-based features and extent of resection predict survival in glioblastoma. Eur. Radiol. 2019 1968 1977
[33] A three-dimensional computational analysis of magnetic resonance images characterizes the biological aggressiveness in malignant brain tumours. J. R. Soc. Interface 2018 20180503
, ,[34] Morphological features on MR images classify multiple glioblastomas in different prognostic groups. Am. J. Radiol. 2019 634 640
[35] Bright solitary waves in malignant gliomas. Phys. Rev. E 2011 021921
, , , ,[36] Clinical implications of in silico mathematical modeling for glioblastoma: a critical review. J. Neurooncol. 2018 1 11
[37] Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model. Anal. 2011 21 33
,[38] P. Sprent and N.C. Smeeton, Applied Nonparametric Statistical Methods. Chapman Hall, London (2007).
[39] S. Strogatz, Nonlinear Dynamics and Chaos: Studies in Nonlinearity. CRC Press, Boca Raton (2007).
[40] A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle. Br. J. Cancer 2007 113 119
, ,[41] The rise of radiomics and implications for oncologic management. J. Natl. Cancer Inst. 2017
[42] Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model. Cancer Res. 2009 9133 9140
[43] Multicenter imaging outcomes study of the cancer genome atlas glioblastoma patient cohort: imaging predictors of overall and progression-free survival. Neuro. Oncol. 2015 1525 1537
[44] Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group prediction. J. Magn. Reson. Imag. 2017 115 123
Cité par Sources :