Theory of optimal harvesting for a size structured model of fish
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 1.

Voir la notice de l'article provenant de la source EDP Sciences

This paper investigates the maximum principle for a nonlinear size structured model that describes the optimal management of the fish resources taking into account harvesting the fish and putting the fry. First, we show the existence of a unique non-negative solution of the system, and give a comparison principle. Next, we prove the existence of optimal policies by using maximizing sequence and Mazur’s theorem in convex analysis. Then, we obtain necessary optimality conditions by using tangent-normal cones and adjoint system techniques. Finally, some examples and numerical results demonstrate the effectiveness of the theoretical results in our paper.
DOI : 10.1051/mmnp/2019006

Rong Liu 1 ; Guirong Liu 1

1 School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, PR China.
@article{MMNP_2020_15_a20,
     author = {Rong Liu and Guirong Liu},
     title = {Theory of optimal harvesting for a size structured model of fish},
     journal = {Mathematical modelling of natural phenomena},
     eid = {1},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2019006},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019006/}
}
TY  - JOUR
AU  - Rong Liu
AU  - Guirong Liu
TI  - Theory of optimal harvesting for a size structured model of fish
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019006/
DO  - 10.1051/mmnp/2019006
LA  - en
ID  - MMNP_2020_15_a20
ER  - 
%0 Journal Article
%A Rong Liu
%A Guirong Liu
%T Theory of optimal harvesting for a size structured model of fish
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019006/
%R 10.1051/mmnp/2019006
%G en
%F MMNP_2020_15_a20
Rong Liu; Guirong Liu. Theory of optimal harvesting for a size structured model of fish. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 1. doi : 10.1051/mmnp/2019006. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2019006/

[1] S. Aniţa, Analysis and Control of Age-Dependent Population Dynamics. Kluwer Academic Publishers, Dordrecht (2000).

[2] L.I. Aniţa, S. Aniţa Note on some periodic optimal harvesting problems for age-structured population dynamics Appl. Math. Comput. 2016 21 30

[3] L.I. Aniţa, S. Aniţa, V. Arnǎutu Optimal harvesting for periodic age-dependent population dynamics with logistic term Appl. Math. Comput. 2009 2701 2715

[4] G.D. Blasio, M. Iannelli, E. Sinestrari Approach to equilibrium in age structured populations with an increasing recruitment process J. Math. Biol. 1982 371 382

[5] B. Ebenman and L. Persson, Size-Structured Populations: Ecology and Evolution. Springer-Verlag, Berlin (1988).

[6] J.Z. Farkas Net reproduction functions for nonlinear structured population models MMNP 2018 32

[7] J.Z. Farkas, T. Hagen Linear stability and positivity results for a generalized size-structured daphnia model with inflow Appl. Anal. 2007 1087 1103

[8] J.Z. Farkas, T. Hagen Stability and regularity results for a size-structured population model J. Math. Anal. Appl. 2007 119 136

[9] J.Z. Farkas, T. Hagen Asymptotic behavior of size-structured populations via juvenile-adult interaction Discrete Continuous Dyn. Syst. Ser. B 2008 249 266

[10] J.Z. Farkas, A.Y. Morozov Modelling effects of rapid evolution on persistence and stability in structured predator-prey systems MMNP 2014 26 46

[11] K.R. Fister, S. Lenhart Optimal harvesting in an age-structured predator-prey model Appl. Math. Optim. 2006 1 15

[12] Z.R. He, Y. Liu An optimal birth control problem for a dynamical population model with size-structure Nonlinear Anal. Real World Appl 2012 1369 1378

[13] Z.R. He, M.S. Wang, Z.E. Ma Optimal birth control problem for nonlinear age-structured population dynamics Discrete Contin. Dyn. Syst. Ser. B 2004 589 594

[14] N. Hritonenko, Y. Yatsenko, R.U. Goetz, A. Xabadia Maximum principle for a size-structured model of forest and carbon sequestration management Appl. Math. Lett 2008 1090 1094

[15] N. Hritonenko, Y. Yatsenko, R.U. Goetz, A. Xabadia A bang-bang regime in optimal harvesting of size-structured populations Nonlinear Anal 2009 e2331 e2336

[16] N. Kato Maximum principle for optimal harvesting in linear size-structured population Math. Popul. Stud 2008 123 136

[17] N. Kato Optimal harvesting for nonlinear size-structured population dynamics J. Math. Anal. Appl 2008 1388 1398

[18] Y. Liu, Z.R. He Optimal harvesting of a size-structured predator-prey model Acta Math. Sci. Ser. A Chin. Ed 2012 90 102

[19] R. Liu, G.R. Liu Optimal birth control problems for a nonlinear vermin population model with size-structure J. Math. Anal. Appl 2017 265 291

[20] R. Liu, G.R. Liu Maximum principle for a nonlinear size-structured model of fish and fry management Nonlinear Anal.-Model 2018 533 552

[21] R. Liu, F.Q. Zhang, Y.M. Chen Optimal contraception control for a nonlinear population model with size structure and a separable mortality Discrete Contin. Dyn. Syst. Ser. B 2016 3603 3618

[22] Z.X. Luo Optimal harvesting problem for an age-dependent n-dimensional food chain diffusion model Appl. Math. Comput. 2007 1742 1752

[23] P. Magal and S. Ruan (Eds.), Structured-Population Models in Biology and Epidemiology. Springer, Berlin (2008).

[24] A. Morozov Prefacce modelling in ecology, epidemiology and evolution Math. Model. Nat. Phenom 2018 E1

[25] F.Q. Zhang, R. Liu, Y.M. Chen Optimal harvesting in a periodic food chain model with size structures in predators Appl. Math. Optim. 2017 229 251

Cité par Sources :