Viscous fingering in the presence of weak disorder
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 2.

Voir la notice de l'article provenant de la source EDP Sciences

We consider the problem of viscous fingering in the presence of quenched disorder, that is both weak and short-range correlated. The two-point correlation function of the harmonic measure is calculated perturbatively, and is used in order to calculate the correction and the box-counting fractal dimension. We show that the disorder increases the fractal dimension, and that its effect decreases logarithmically with the size of the fractal.
DOI : 10.1051/mmnp/2018055

Eldad Bettelheim 1 ; Oded Agam 1

1 Racah Institute of Physics, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem 91904, Israel
@article{MMNP_2020_15_a26,
     author = {Eldad Bettelheim and Oded Agam},
     title = {Viscous fingering in the presence of weak disorder},
     journal = {Mathematical modelling of natural phenomena},
     eid = {2},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2018055},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2018055/}
}
TY  - JOUR
AU  - Eldad Bettelheim
AU  - Oded Agam
TI  - Viscous fingering in the presence of weak disorder
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2018055/
DO  - 10.1051/mmnp/2018055
LA  - en
ID  - MMNP_2020_15_a26
ER  - 
%0 Journal Article
%A Eldad Bettelheim
%A Oded Agam
%T Viscous fingering in the presence of weak disorder
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2018055/
%R 10.1051/mmnp/2018055
%G en
%F MMNP_2020_15_a26
Eldad Bettelheim; Oded Agam. Viscous fingering in the presence of weak disorder. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 2. doi : 10.1051/mmnp/2018055. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2018055/

[1] O. Alekseev, M. Mineev-Weinstein Theory of stochastic Laplacian growth J. Stat. Phys 2017 68 91

[2] R. Cafiero, A. Gabrielli, M. Marsili, L. Pietronero, L. Torosantucci Laplacian Fractal Growth in Media with Quenched Disorder Phys. Rev. Lett. 1997 1503

[3] V. Cornette, P.M. Cantres, A.J. Ramirez-Pastor, F. Nieto Diffusion-limited aggregates grown on nonuniform substrates Physica A 2013 5879

[4] M. Eden, A Two-dimensional Growth Process. In Vol. 4 of Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, Berkeley (1961) 223–239.

[5] B. Gustafsson, R. Teodorescu and A. Vasil’ev, Classical and Stochastic Laplacian Growth. Springer, Basel (2014).

[6] T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, B. Shraiman Fractal measures and their singularities: The characterization of strange sets Phys. Rev. A 1986 1141

[7] H.J.S. Hele-Shaw The Flow of Water Nature 1898 34 36

[8] A. Hernàndez-Machado, J. Soriano, A. M. Lacasta, M.A. Rodríguez, L. Ramírez-Piscina, J. Ortín Interface roughening in Hele-Shaw flows with quenched disorder: Experimental and theoretical results Europhys. Lett 2001 194 200

[9] M.H. Jensen, A. Levermann, J. Mathiesen, I. Procaccia Multifractal structure of the harmonic measure of diffusion-limited aggregates Phys. Rev. E 2002 046109

[10] S.M. Kogan, A.Y. Shul’Man Theory of fluctuations in a nonequilibrium JETP 1969 467

[11] S.M. Kogan, A.Y. Shul’Man Theory of fluctuations in a nonequilibrium electron gas Zh. Eksp. Teor. Fiz. 1969 862 876

[12] K.B. Lauritsen, M. Sahimi, H. Herrman Phys. Rev. E 1993 1272

[13] P. Meakin Phys. Rev. B 1984 4327

[14] P. Meakin, M. Murat, A. Aharony, J. Feder, T. Jøssang Diffusion-limited aggregates near the percolation threshold Phys. A 1989 1 20

[15] M. Murat, A. Aharony Phys. Rev. Lett 1986 1875

[16] E. Pauné, J. Casademunt Phys. Rev. Lett 2003 144504

[17] P.G. Saffman, G.I. Taylor Proc. R. Soc. Lond. A 1958 312

[18] L.M. Sander Contemp. Phys 2000 203 218

[19] J. Soriano, J. Ortín, A. Hernàndez-Machado Phys. Rev. E 2002 031603

[20] J. Soriano, J.J. Ramasco, M.A. Rodríguez, A. Hernàndez-Machado, J. Ortín Anomalous Roughening of Hele-Shaw Flows with Quenched Disorder Phys. Rev. Lett 2002 026102

[21] R. Toussaint, G. Løvoll, Y. Méheust, K.J. Måløy, J. Schmittbuhl Europhys. Lett. 2005 583 589

Cité par Sources :