Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2016_11_6_a3, author = {J. Clairambault and O. Fercoq}, title = {Physiologically {Structured} {Cell} {Population} {Dynamic} {Models} with {Applications} to {Combined} {Drug} {Delivery} {Optimisation} in {Oncology}}, journal = {Mathematical modelling of natural phenomena}, pages = {45--70}, publisher = {mathdoc}, volume = {11}, number = {6}, year = {2016}, doi = {10.1051/mmnp/201611604}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611604/} }
TY - JOUR AU - J. Clairambault AU - O. Fercoq TI - Physiologically Structured Cell Population Dynamic Models with Applications to Combined Drug Delivery Optimisation in Oncology JO - Mathematical modelling of natural phenomena PY - 2016 SP - 45 EP - 70 VL - 11 IS - 6 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611604/ DO - 10.1051/mmnp/201611604 LA - en ID - MMNP_2016_11_6_a3 ER -
%0 Journal Article %A J. Clairambault %A O. Fercoq %T Physiologically Structured Cell Population Dynamic Models with Applications to Combined Drug Delivery Optimisation in Oncology %J Mathematical modelling of natural phenomena %D 2016 %P 45-70 %V 11 %N 6 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611604/ %R 10.1051/mmnp/201611604 %G en %F MMNP_2016_11_6_a3
J. Clairambault; O. Fercoq. Physiologically Structured Cell Population Dynamic Models with Applications to Combined Drug Delivery Optimisation in Oncology. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 6, pp. 45-70. doi : 10.1051/mmnp/201611604. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611604/
[1] An automaton model for the cell cycle Interface focus 36 47 2011
, , ,[2] A cell cycle automaton model for probing circadian patterns of anticancer drug delivery Adv. Drug Deliv. Rev. 1036 1010 2007
, ,[3] Altinok, A., Lévi, F., Goldbeter, A.: Optimizing temporal patterns of anticancer drug delivery by simulations of a cell cycle automaton. In: M. Bertau, E. Mosekilde, H. Westerhoff (eds.) Biosimulation in Drug Development, pp. 275–297. Wiley (2008)
[4] Identifying mechanisms of chronotolerance and chronoefficacy for the anticancer drugs 5-fluorouracil and oxaliplatin by computational modeling Eur. J. Pharm. Sci. 20 38 2009
, ,[5] Optimisation of time-scheduled regimen for anti-cancer drug infusion Mathematical Modelling and Numerical Analysis 1069 1086 2006
, ,[6] Nonnegative matrices in the mathematical sciences Amer. Math. Soc. 1994
,[7]
[8] Designing proliferating cell population models with functional targets for control by anti-cancer drugs Discrete and Continuous Dynamical Systems - Series B 865 889 2013
,[9] Age-structured cell population model to study the influence of growth factors on cell cycle dynamics Mathematical Biosciences and Engineering 1 17 2013
, , , ,[10] Billy, F., Clairambault, J., Fercoq, O.: Optimisation of cancer drug treatments using cell population dynamics. In: A. Friedman, E. Kashdan, U. Ledzewicz, H. Schättler (eds.) Mathematical Models and Methods in Biomedicine, Lecture Notes on Mathematical Modelling in the Life Sciences, pp. 265–309. Springer (2013)
[11] Synchronisation and control of proliferation in cycling cell population models with age structure Mathematics and Computers in Simulation 66 94 2014
, , , , , ,[12] A.F.: Comparative pharmacokinetic analysis of 5-fluorouracil and its major metabolite 5- fluoro-5,6-dihydrouracil after conventional and reduced test dose in cancer patients Clin. Cancer Res. 3032 37 2000
, , , ,[13] Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer J Clin Oncol 663 671 2009
, , , , , , , , , , , ,[14] Cell population heterogeneity and evolution towards drug resistance in cancer: Biological and mathematical assessment, theoretical treatment optimisation Biochimica et Biophysica Acta (BBA) - General Subjects 2627 2645 2016
, ,[15] Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, nongenetic instability, and stress-induced adaptation Cancer Res 930 939 2015
, , , , , ,[16] Modeling oxaliplatin drug delivery to circadian rhythm in drug metabolism and host tolerance Adv. Drug Deliv. Rev. 1054 1068 2007
[17] Modelling physiological and pharmacological control on cell proliferation to optimise cancer treatments Mathematical Modelling of Natural Phenomena 12 67 2009
[18] Optimizing cancer pharmacotherapeutics using mathematical modeling and a systems biology approach Personalized Medicine 271 286 2011
[19] Comparison of Perron and Floquet eigenvalues in age-structured cell division models Mathematical Modelling of Natural Phenomena 183 209 2009
, ,[20] Circadian rhythm and cell population growth Mathematical and Computer Modelling 1558 1567 2011
, ,[21] An inequality for the Perron and Floquet eigenvalues of monotone differential systems and age-structured equations C. R. Acad. Sci. (Paris) Ser. I Mathématique 549 554 2007
, ,[22] Clairambault, J., Laroche, B., Mischler, S., Perthame, B.: A mathematical model of the cell cycle and its control. Tech. rep., Number 4892, INRIA, Domaine de Voluceau, BP 105, 78153 Rocquencourt, France (2003). URL http://hal.inria.fr/inria-00071690
[23] Circadian rhythm and tumour growth C. R. Acad. Sci. (Paris) Ser. I Mathématique (Équations aux dérivées partielles) 17 22 2006
, ,[24] Clairambault, J., Michel, P., Perthame, B.: A model of the cell cycle and its circadian control. In: A. Deutsch, L. Brusch, H. Byrne, G. de Vries, J. Herzel (eds.) Mathematical Modeling of Biological Systems, Volume I: Cellular Biophysics, Regulatory Networks, Development, Biomedicine, and Data Analysis, pp. 239–251. Birkhäuser, Boston (2007)
[25] Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer J Clin Oncol 2938 2947 2000
, , , , , , , , , , , , , , , , ,[26] Clinical pharmacology of 5-fluorouracil Clin. Pharmacokinet. 215 237 1989
,[27] A spatial physiological model for p53 intracellular dynamics J Theor Biol 9 24 2013
, ,[28] Reaction-diffusion systems for spatio-temporal intracellular protein networks: A beginner’s guide with two examples Comput Struct Biotechnol J 12 22 2014
,[29] The dynamics of p53 in single cells: physiologically based ode and reaction-diffusion pde models Phys Biol 2014
, , ,[30] The p53 protein and its molecular network: modelling a missing link between dna damage and cell fate Biochim Biophys Acta - Proteins and Proteomics 232 247 2014
, , ,[31] DNA strand breaks and apoptosis induced by oxaliplatin in cancer cells Biochem Pharmacol 225 237 2003
, , , ,[32] Perron vector optimization applied to search engines Applied Numerical Mathematics 77 99 2014
[33] Effects of light and food schedules on liver and tumor molecular clocks in mice J Natl Cancer Inst 507 517 2005
, , , , , ,[34] Host circadian clock as a control point in tumor progression J Natl Cancer Inst 690 697 2002
, , , , , , , ,[35] Search for the optimal schedule for the oxaliplatin/5-fluorouracil association modulated or not by folinic acid: preclinical data Clinical Cancer Research 2529 1998
, , ,[36] Role of RecA and the SOS response in thymineless death in Escherichia coli PLoS Genet e1000,865 2010
, , , ,[37] The contribution of age structure to cell population responses to targeted therapeutics Journal of Theoretical Biology 19 27 2012
, , , ,[38] A change of strategy in the war on cancer Nature 508 509 2009
[39] Adaptive therapy Cancer Research 4894 4903 2009
, , ,[40] Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle Proc Natl Acad Sci U S A 21,643 21,648 2009
,[41] From simple to complex patterns of oscillatory behavior in a model for the mammalian cell cycle containing multiple oscillatory circuits Chaos 045,109 2010
,[42] A skeleton model for the network of cyclin-dependent kinases driving the mammalian cell cycle Interface Focus 24 35 2011
,[43] The circadian clock component BMAL1 is a critical regulator of p21(WAF1/CIP1) expression and hepatocyte proliferation J. Biol. Chem. 4535 42 2008
, , , ,[44] Entrainment of the mammalian cell cycle by the circadian clock: modeling two coupled cellular rhythms PLoS Comput Biol e1002,516 2012
,[45] A mathematical model separates quantitatively the cytostatic and cytotoxic effects of a her2 tyrosine kinase inhibitor Theoretical Biology and Medical Modelling 14 2007
, , ,[46] Kato, T.: Perturbation Theory for Linear Operators. Springer-Verlag Berlin and Heidelberg GmbH Co. K (1966)
[47] Cancer chronotherapeutics Special issue of Chronobiology International 1 19 2002
[48] Chronotherapeutics: the relevance of timing in cancer therapy Cancer Causes Control 611 621 2006
[49] The circadian timing system: A coordinator of life processes. implications for the rhythmic delivery of cancer therapeutics IEEE-EMB Magazine 17 20 2008
[50] Implications of circadian clocks for the rhythmic delivery of cancer therapeutics Phil. Trans. Roy. Soc. A 3575 3598 2008
, , ,[51] Cetuximab and circadian chronomodulated chemotherapy as salvage treatment for metastatic colorectal cancer (mCRC): safety, efficacy and improved secondary surgical resectability Cancer Chemother Pharmacol 339 348 2011
, , , , , , , , ,[52] Circadian timing in cancer treatments Annual Review of Pharmacology and Toxicology 377 421 2010
, , , ,[53] Circadian rhythms: Mechanisms and therapeutic implications Ann. Rev. Pharmacol. Toxicol. 493 528 2007
,[54] Eigenvalue optimization Acta Numerica 149 190 1996
,[55] Modulation of nonprotein sulphydryl compounds rhythm with buthionine sulphoximine: relationship with oxaliplatin toxicity in mice Arch. Toxicol. 574 579 1998
, , , ,[56] 5-fluorouracil: mechanisms of action and clinical strategies Nat Rev Cancer 330 338 2003
, ,[57] Tracking the evolution of cancer cell populations through the mathematical lens of phenotype-structured equations Biol Direct 2016
, ,[58] Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors Bull Math Biol 1 22 2015
, , , ,[59] Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies ESAIM: Mathematical Modelling and Numerical Analysis 377 399 2013
, , , ,[60] A plausible model for the digital response of p53 to DNA damage Proc. Natl. Acad. Sci 266 71 2005
, , , , ,[61] Control mechanism of the circadian clock for timing of cell division in vivo Science 255 259 2003
, , , , ,[62] Applications of mathematics to medical problems Proc. Edinburgh Math. Soc. 98 130 1926
[63] The control of linear time-periodic systems using Floquet-Lyapunov theory International Journal of Control 472 490 2004
, ,[64] Cancer chronotherapy: principles, applications, and perspectives Cancer 155 169 2003
,[65] MRP8/ABCC11 directly confers resistance to 5-fluorouracil Mol Cancer Ther 122 127 2007
, , , , , , ,[66] On minimizing the spectral radius of a nonsymmetric matrix function: optimality conditions and duality theory SIAM Journal on Matrix Analysis and Applications 473 498 1988
,[67] Perthame, B.: Transport Equations in Biology. Frontiers in Mathematics series. Birkhäuser, Boston (2007)
[68] Prolonged retention of high concentrations of 5-fluorouracil in human and murine tumors as compared with plasma Cancer Chemother. Pharmacol. 269 276 1993
, , , , ,[69] Polak, E.: Optimization: algorithms and consistent approximations, vol. 124. Springer Science Business Media (2012)
[70] Pontryagin, L.S., Boltyanski, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The mathematical theory of optimal processes. Interscience Publishers (1962). Translated from the Russian by K.N. Trirogoff
[71] Dihydropyrimidine dehydrogenase circadian rhythm in mouse liver: comparison between enzyme activity and gene expression Eur. J. Cancer 822 828 2003
, , , , , , , ,[72] Pouchol, C., Clairambault, J., Lorz, A., Trélat, E.: Asymptotic study and optimal control of integrodifferential systems modelling healthy and cancer cells exposed to chemotherapy (2016). In review
[73] ABC transporters: the power to change Nat Rev Mol Cell Biol 218 227 2009
, ,[74] Schättler, H., Ledzewicz, U.: Geometric Optimal Control, Interdisciplinary Applied Mathematics, vol. 38. Springer (2012)
[75] Schättler, H., Ledzewicz, U.: Optimal Control for Mathematical Models of Cancer Therapies, An Application of Geometric Methods, Interdisciplinary Applied Mathematics, vol. 42. Springer (2015)
[76] Scilab: http://www.scilab.org/en. Free open source software for numerical computation
[77] The p53 tumor suppressor gene: from molecular biology to clinical investigation Ann N Y Acad Sci 121 37 2000
[78] Differences between young and elderly subjects in seasonal and circadian variations of total plasmaproteins and blood volume as reflected by hemoglobin, hematocrit, and erythrocyte counts Clinical Che 801 804 1986
, , , , , ,[79] Mechanisms of tumor promotion: possible role of inhibited intercellular communication Eur J Cancer Clin Oncol 599 601 1987
[80] A conceptual integration of extra-, intra- and gap junctional- intercellular communication in the evolution of multi-cellularity and stem cells: How disrupted cell-cell communication during development can affect diseases later in life International Journal of Stem Cell Research & Therapy 021 2016
[81] Cell cycle arrest and apoptosis induced by oxaliplatin (L-OHP) on four human cancer cell lines Anticancer Res 2093 2099 2006
, , ,[82] Cell cycle arrest by oxaliplatin on cancer cells Fundam Clin Pharmacol 165 172 2007
, , ,[83] Circadian clock coordinates cancer cell cycle progression, thymidylate synthase, and 5-fluorouracil therapeutic index Mol Cancer Ther 2023 2033 2006
, , ,Cité par Sources :