Voir la notice de l'article provenant de la source EDP Sciences
A. Bouchnita 1, 2, 3, 4 ; K. Bouzaachane 3, 5, 6 ; T. Galochkina 2, 4, 7, 8 ; P. Kurbatova 1 ; P. Nony 1, 9 ; V. Volpert 2, 4, 10
@article{MMNP_2016_11_6_a2, author = {A. Bouchnita and K. Bouzaachane and T. Galochkina and P. Kurbatova and P. Nony and V. Volpert}, title = {An {Individualized} {Blood} {Coagulation} {Model} to {Predict} {INR} {Therapeutic} {Range} {During} {Warfarin} {Treatment}}, journal = {Mathematical modelling of natural phenomena}, pages = {28--44}, publisher = {mathdoc}, volume = {11}, number = {6}, year = {2016}, doi = {10.1051/mmnp/201611603}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611603/} }
TY - JOUR AU - A. Bouchnita AU - K. Bouzaachane AU - T. Galochkina AU - P. Kurbatova AU - P. Nony AU - V. Volpert TI - An Individualized Blood Coagulation Model to Predict INR Therapeutic Range During Warfarin Treatment JO - Mathematical modelling of natural phenomena PY - 2016 SP - 28 EP - 44 VL - 11 IS - 6 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611603/ DO - 10.1051/mmnp/201611603 LA - en ID - MMNP_2016_11_6_a2 ER -
%0 Journal Article %A A. Bouchnita %A K. Bouzaachane %A T. Galochkina %A P. Kurbatova %A P. Nony %A V. Volpert %T An Individualized Blood Coagulation Model to Predict INR Therapeutic Range During Warfarin Treatment %J Mathematical modelling of natural phenomena %D 2016 %P 28-44 %V 11 %N 6 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611603/ %R 10.1051/mmnp/201611603 %G en %F MMNP_2016_11_6_a2
A. Bouchnita; K. Bouzaachane; T. Galochkina; P. Kurbatova; P. Nony; V. Volpert. An Individualized Blood Coagulation Model to Predict INR Therapeutic Range During Warfarin Treatment. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 6, pp. 28-44. doi : 10.1051/mmnp/201611603. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611603/
[1] A model for the formation and lysis of blood clots Pathophysiology of haemostasis and thrombosis 2005 109 120
, ,[2] Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians evidence-based clinical practice guidelines Chest Journal 2008 160S 198S
, , , , ,[3] J. P. Antovic, M. Blombäck. Essential Guide to Blood Coagulation. Wiley Online Library (2013).
[4] Numerical modelling of cell distribution in blood flow Math. Model. Nat. Phenom. 2014 69 84
, , , , , , ,[5] Methods of blood flow modelling Math. Model. Nat. Phenom. 2016 1 25
, , , ,[6] On the regimes of blood coagulation Applied Mathematics Letters 2016 74 79
, ,[7] Warfarin inhibition of vitamin K 2, 3-epoxide reductase in rat liver microsomes Biochemistry 1983 5655 5660
, , ,[8] Modelling thrombosis using dissipative particle dynamics method Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 2008 3265 3279
, ,[9] Coagulation under flow: the influence of flow-mediated transport on the initiation and inhibition of coagulation Pathophysiology of haemostasis and thrombosis 2005 91 108
,[10] Spatiotemporal dynamics of fibrin formation and spreading of active thrombin entering non-recalcified plasma by diffusion Biochimica et Biophysica Acta (BBA)-General Subjects 2000 337 345
, ,[11] Effect of warfarin on plasma concentrations of vitamin K dependent coagulation factors in patients with stable control and monitored compliance British journal of haematology 1990 82 85
, , , , , , ,[12] Antithrombin III. Its metabolism and its function in blood coagulation Thrombosis et diathesis haemorrhagica 1962 1 1
,[13] Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range Chest Journal 2001 8S 21S
, , , , , ,[14] Heparin and low-molecular-weight heparin mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety Chest Journal 2001 64S 94S
, , , , , , , ,[15] A model for the stoichiometric regulation of blood coagulation Journal of Biological Chemistry 2002 18322 18333
, , ,[16] Clinical pharmacokinetics and pharmacodynamics of warfarin. Understanding the dose-effect relationship Clinical pharmacokinetics 1986 483 504
[17] Grow with the flow: a spatial-temporal model of platelet deposition and blood coagulation under flow Mathematical Medicine and Biology 2010
,[18] Virchow’s triad revisited: abnormal flow Pathophysiology of haemostasis and thrombosis 2003 455 457
[19] P. W. Majerus, G.J. Broze, J. P. Miletich, D.M. Tollefsen. Anticoagulant thrombolytic, and antiplatelet drugs. Hardman JG, Limbird LE, eds. Goodman and Gilman’s The pharmacological basis of therapeutics. 9th ed. New York: McGraw-Hill, (1996), 1347–51.
[20] Importance of VIIIa inactivation in a mathematical model for the formation, growth, and lysis of clots Math. Model. Nat. Phenom. 2014 17 33
,[21] Systems biology and systems pharmacology of thrombosis Math. Model. Nat. Phenom. 2014 4 16
, , , , , , , ,[22] Influence of enzymatic reactions on blood coagulation autowave Biophysics 2014 110 118
,[23] Warfarin Applied pharmacokinetics 1986 1057 104
, ,[24] Prothrombin time. http://www.nlm.nih.gov/medlineplus/ency/article/003652.htm. Accessed: 2016-05-23
[25] Blood coagulation simulations using a viscoelastic model Math. Model. Nat. Phenom. 2014 34 45
,[26] Vitamin K-dependent formation of gamma-carboxyglutamic acid Annual review of biochemistry 1977 157 172
,[27] Bayesian pharmacokinetic/pharmacodynamic forecasting of prothrombin response to warfarin therapy: preliminary evaluation Therapeutic drug monitoring 1985 174 180
, , ,[28] T. L. Jackson, A. Radunskaya. Applications of Dynamical Systems in Biology and Medicine (Vol. 158). T. L. Jackson (Ed.). Springer, 2015.
[29] Spatial dynamics of contact-activated fibrin clot formation in vitro and in silico in Haemophilia B: effects of severity and Ahemphil B treatment Math. Model. Nat. Phenom. 2006 124 137
, , , , , , ,[30] Continuous mathematical model of platelet thrombus formation in blood flow Russian Journal of Numerical Analysis and Mathematical Modelling 2012 192 212
, , , , , ,[31] Modelling of thrombus growth in flow with a DPD-PDE method Journal of Theoretical Biology 2013 30 41
, , , , ,[32] Modelling of platelet-fibrin clot formation in flow with a DPD-PDE method Journal of mathematical biology 2016 649 681
, , , , ,[33] Influence of fibrinogen deficiency on clot formation in flow by hybrid model Math. Model. Nat. Phenom. 2015 36 47
, ,[34] Volpert, A. I., Volpert, V. A., Volpert, V. A. Traveling wave solutions of parabolic systems (Vol. 140). American Mathematical Soc, 1994.
[35] A comprehensive model for the humoral coagulation network in humans Clinical Pharmacology & Therapeutics 2009 290 298
, ,[36] Warfarin INR targets. http://www.globalrph.com/warfarin_inr_targets.htm. Accessed: 2016-02-22.
[37] The hydraulic permeability of blood clots as a function of fibrin and platelet density Biophysical journal 2013 1812 1823
, ,Cité par Sources :