Parameter Estimation Using Unidentified Individual Data in Individual Based Models
Mathematical modelling of natural phenomena, Tome 11 (2016) no. 6, pp. 9-27.

Voir la notice de l'article provenant de la source EDP Sciences

In physiological experiments, it is common for measurements to be collected from multiple subjects. Often it is the case that a subject cannot be measured or identified at multiple time points (referred to as unidentified individual data in this work but often referred to as aggregate population data [5, Chapter 5]). Due to a lack of alternative methods, this form of data is typically treated as if it is collected from a single individual. This assumption leads to an overconfidence in model parameter values and model based predictions. We propose a novel method which accounts for inter-individual variability in experiments where only unidentified individual data is available. Both parametric and nonparametric methods for estimating the distribution of parameters which vary among individuals are developed. These methods are illustrated using both simulated data, and data taken from a physiological experiment. Taking the approach outlined in this paper results in more accurate quantification of the uncertainty attributed to inter-individual variability.
DOI : 10.1051/mmnp/201611602

H.T. Banks 1 ; R. Baraldi 1 ; J. Catenacci 1 ; N. Myers 1

1 Center for Research in Scientific Computation, North Carolina State University Raleigh, NC 27695-8212 USA
@article{MMNP_2016_11_6_a1,
     author = {H.T. Banks and R. Baraldi and J. Catenacci and N. Myers},
     title = {Parameter {Estimation} {Using} {Unidentified} {Individual} {Data} in {Individual} {Based} {Models}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {9--27},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2016},
     doi = {10.1051/mmnp/201611602},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611602/}
}
TY  - JOUR
AU  - H.T. Banks
AU  - R. Baraldi
AU  - J. Catenacci
AU  - N. Myers
TI  - Parameter Estimation Using Unidentified Individual Data in Individual Based Models
JO  - Mathematical modelling of natural phenomena
PY  - 2016
SP  - 9
EP  - 27
VL  - 11
IS  - 6
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611602/
DO  - 10.1051/mmnp/201611602
LA  - en
ID  - MMNP_2016_11_6_a1
ER  - 
%0 Journal Article
%A H.T. Banks
%A R. Baraldi
%A J. Catenacci
%A N. Myers
%T Parameter Estimation Using Unidentified Individual Data in Individual Based Models
%J Mathematical modelling of natural phenomena
%D 2016
%P 9-27
%V 11
%N 6
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611602/
%R 10.1051/mmnp/201611602
%G en
%F MMNP_2016_11_6_a1
H.T. Banks; R. Baraldi; J. Catenacci; N. Myers. Parameter Estimation Using Unidentified Individual Data in Individual Based Models. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 6, pp. 9-27. doi : 10.1051/mmnp/201611602. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611602/

[1] R.A. Albanese, H.T. Banks, M.V. Evans, L.K. Potter Physiologically based pharmacokinetic models for the transport of trichloroethylene in adipose tissue Bulletin of Mathematical Biology 2002 97 131

[2] H.T. Banks. Functional Analysis Framework for Modeling, Estimation and Control in Science and Engineering. Chapman and Hall/CRC Press, Boca Raton, FL, 2012.

[3] H.T. Banks, K.L. Bihari Modeling and estimating uncertainty in parameter estimation Inverse Problems 2001 95 111

[4] H.T. Banks, B.G. Fitzpatrick, L.K. Potter, Y. Zhang. Stochastic Analysis, Control, Optimization and Applications: a Volume in Honor of W.H. Fleming. Estimation of probability distributions for individual parameters using aggregate population data. Birkhauser, Boston, 1999

[5] H.T. Banks, S. Hu, W.C. Thompson. Modeling and Inverse Problems in the Presence of Uncertainty. Taylor/Francis-Chapman/Hall-CRC Press, Boca Raton, FL, 2014.

[6] H.T. Banks, F. Kappel Spline approximations for functional differential equations Journal of Differential Equations 1979 496 522

[7] H.T. Banks, Z.R. Kenz, W.C. Thompson A review of selected techniques in inverse problem nonparametric probability distribution estimation Journal of Inverse and Ill-Posed Problems 2012 429 460

[8] H.T. Banks, L.K. Potter Probabilistic methods for addressing uncertainty and variability in biological models: Application to a toxicokinetic model Mathematical Biosciences 2004 193 225

[9] H.A. Barton, W.A. Chiu, R.W. Setzer, M.E. Anderson, A.J. Bailer, F.Y Bois, R.S. Dewoskin, S. Hays, G. Johanson, N. Jones, G. Loizou, R.C. Macphail, C.J. Portier, M. Spendiff, Y.M. Tan Characterizing uncertainty and variability in physiologically based pharmacokinetic models: state of the science and needs for research and implementation Toxicological Sciences 2007 395 402

[10] J.C. Caldwell, M.V. Evans, K. Krishnan Cutting edge PBPK models and analyses: providing the basis for future modeling efforts and bridges to emerging toxicology paradigms Journal of Toxicology 2012

[11] M. Davidian, A.R. Gallant The nonlinear mixed effects model with a smooth random effects density Biometrika 1993 475 488

[12] S. Donnet, A. Samson A review on estimation of stochastic differential equations for pharmacokinetic/pharmacodynamic models Advanced Drug Delivery Reviews 2013 929 939

[13] T. Eissing, J. Lippert, S. Willmann Pharmacogenomics of codeine, morphine, and morphine-6-glucuronide Molecular Diagnosis & Therapy 2012 43 53

[14] M.J. Gilkey, V. Krishnan, L. Scheetz, X. Jia, A.K. Rajasekaran, P.S. Dhurjati Physiologically based pharmacokinetic modeling of fluorescently labeled block copolymer nanoparticles for controlled drug delivery in leukemia therapy CPT: Pharmacometrics & Systems Pharmacology 2015 167 174

[15] M. Krauss, R. Burghaus, J. Lippert, M. Niemi, P. Neuvonen, A. Schuppert, S. Willmann, L. Kuepfer, L. Görlitz Using Bayesian-PBPK modeling for assessment of inter-individual variability and subgroup stratification Silico Pharmacology 2013 1 11

[16] V. Krishnan, X. Xu, S.P. Barwe, X. Yang, K. Czymmek, S.A. Waldman, R.W. Mason, X. Jia, A.K. Rajasekaran Dexamethasone-loaded block copolymer nanoparticles induce leukemia cell death and enhance therapeutic efficacy: a novel application in pediatric nanomedicine Molecular Pharmaceutics 2012 2199 2210

[17] M.J. Lindstrom, D.M. Bates Nonlinear mixed effects models for repeated measures data Biometrics 1990 673 687

[18] J. Lippert, M. Brosch, O. Kampen, M. Meyer, H.U. Siegmund, C. Schafmayer, T. Becker, B. Laffert, L. Görlitz, S. Schreiber, P.J. Neuvonen, M. Niemi, J. Hampe, L. Kuepfer A mechanistic, model-based approach to safety assessment in clinical development CPT: Pharmacometrics & Systems Pharmacology 2012 1 8

[19] G. Loizou, M. Spendiff, H.A. Barton, J. Bessems, F.Y. Bois, M.B. Dõyvoire, H. Buist, H.J. Clewell, B. Meek, U. Gundert-Remy, G. Goerlitz, W. Schmitt Development of good modelling practice for physiologically based pharmacokinetic models for use in risk assessment: the first steps Regulatory Toxicology and Pharmacology 2008 400 411

[20] J. Pinheiro, D. Bates. Mixed-effects Models in S and S-PLUS. Springer Science Business Media, New York, 2006.

[21] M.H. Schultz. Spline Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1973.

[22] L.B. Sheiner The population approach to pharmacokinetic data analysis: rationale and standard data analysis methods Drug Metabolism Reviews 1984 153 171

[23] R.C. Smith. Uncertainty Quantification: Theory, Implementation and Application. SIAM, Philadelphia, 2013.

[24] T.T. Soong. Random Differential Equations in Science and Engineering. Academic Press, New York, 1973.

[25] D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, Princeton, NJ, 2010.

Cité par Sources :