Mathematics of Pharmacokinetics and Pharmacodynamics: Diversity of Topics, Models and Methods
Mathematical modelling of natural phenomena, Tome 11 (2016) no. 6, pp. 1-8.

Voir la notice de l'article provenant de la source EDP Sciences

A short review on pharmacokinetics-pharmacodynamics (PK-PD) presented below aims to show the evolution of some concepts and ideas in this field. Some of them are developed in more detail in the papers of this issue. The key question for a practical application of PK-PD models is the ability to estimate the model parameters using patients data. In [1] a novel approach to an accurate quantification of the uncertainty in parameter estimates attributed to inter-individual variability is proposed. The analyzed PK-PD model is formulated as a compartmental ODE system. The methodology of recognizing and capturing the uncertainty in predicted quantities of interest due to inter-individual variability when the individual is not available for repeated measurements may prove to be invaluable in the risk assessment of future experiments and drug applications. Anticancer molecular PK-PD in a cell population dynamics model with drug delivery optimisation is discussed in [2]. The works [3] and [4] deal with various aspects of hemostasis modelling, and [5] with metabolic aspects in a whole-body setting. These studies represent the diversity of aspects of PK-PD modelling nowadays: theoretical about parameter estimation in general versus applied to medical questions in particular, localised cell population versus whole-body settings, cell population and whole-body versus patient population settings.
DOI : 10.1051/mmnp/201611601

G. Bocharov 1 ; A. Bouchnita 2, 3, 4, 5 ; J. Clairambault 6, 7 ; V. Volpert 4, 5, 8

1 Institute of Numerical Mathematics of the Russian Academy of Sciences, Gubkina Street 8, Moscow, Russia
2 LBBE, UMR 5558 CNRS, University Lyon 1, 69622 Villeurbanne, France
3 LERMA, Mohammadia School of Engineering, University Mohamed V, Rabat, Morocco
4 Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France
5 INRIA Team Dracula, INRIA Antenne Lyon la Doua, Villeurbanne, Lyon, France
6 INRIA Team Mamba, INRIA Paris, 2 rue Simone Iff, CS 42112, 75589 Paris, France
7 Sorbonne Universit′es, UPMC, Lab. J.-L. Lions UMR 7598 CNRS, 4, pl. Jussieu, b. c. 187, 75252 Paris, France
8 Laboratoire Poncelet, UMI 2615 CNRS, Bolshoy Vlasyevskiy Pereulok 11, 119002 Moscow, Russia
@article{MMNP_2016_11_6_a0,
     author = {G. Bocharov and A. Bouchnita and J. Clairambault and V. Volpert},
     title = {Mathematics of {Pharmacokinetics} and {Pharmacodynamics:} {Diversity} of {Topics,} {Models} and {Methods}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {1--8},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2016},
     doi = {10.1051/mmnp/201611601},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611601/}
}
TY  - JOUR
AU  - G. Bocharov
AU  - A. Bouchnita
AU  - J. Clairambault
AU  - V. Volpert
TI  - Mathematics of Pharmacokinetics and Pharmacodynamics: Diversity of Topics, Models and Methods
JO  - Mathematical modelling of natural phenomena
PY  - 2016
SP  - 1
EP  - 8
VL  - 11
IS  - 6
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611601/
DO  - 10.1051/mmnp/201611601
LA  - en
ID  - MMNP_2016_11_6_a0
ER  - 
%0 Journal Article
%A G. Bocharov
%A A. Bouchnita
%A J. Clairambault
%A V. Volpert
%T Mathematics of Pharmacokinetics and Pharmacodynamics: Diversity of Topics, Models and Methods
%J Mathematical modelling of natural phenomena
%D 2016
%P 1-8
%V 11
%N 6
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611601/
%R 10.1051/mmnp/201611601
%G en
%F MMNP_2016_11_6_a0
G. Bocharov; A. Bouchnita; J. Clairambault; V. Volpert. Mathematics of Pharmacokinetics and Pharmacodynamics: Diversity of Topics, Models and Methods. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 6, pp. 1-8. doi : 10.1051/mmnp/201611601. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611601/

[1] H.T. Banks, R. Baraldi, J. Catenacci, N. Myers Parameter estimation using unidentified individual data in individual based models Math. Model. Nat. Phenom. 2016 9 27

[2] J. Clairambault, O. Fercoq Physiologically structured cell population dynamic models with applications to combined drug delivery optimisation in oncology Math. Model. Nat. Phenom. 2016 45 70

[3] A. Bouchnita, K. Bouzaachane, T. Galochkina, P. Kurbatova, P. Nony, V. Volpert An individualized blood coagulation model to predict INR therapeutic range during warfarin treatment Math. Model. Nat. Phenom. 2016 28 44

[4] A. Modepalli Susree, B. Mohan Anand Reaction mechanisms and kinetic constants used in mechanistic models of coagulation and fibrinolysis Math. Model. Nat. Phenom. 2016 71 90

[5] T.O. Shepelyuk, M.A. Panteleev, A.N. Sveshnikova Computational modeling of quiescent platelet energy metabolism in the context of whole-body glucose turnover Math. Model. Nat. Phenom. 2016 91 101

[6] P. Macheras, A. Iliadis, Modeling in Biopharmaceutics, Pharmacokinetics and Pharmacodynamics, Homogeneous and Heterogeneous Approaches. Springer, (2006), 293–308.

[7] C.V. Fletcher, K. Staskus, S.W. Wietgrefe, M. Rothenberger, C. Reilly, J.G. Chipman, G.J. Beilman, A. Khoruts, A. Thorkelson, T.E. Schmidt, J. Anderson, K. Perkey, M. Stevenson, A.S. Perelson, D.C. Douek, A.T. Haase, T.W. Schacker Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues Proc Natl Acad Sci U S A 2014 2307 2312

[8] R. Lorenzo-Redondo, H.R. Fryer, T. Bedford, E.Y. Kim, J. Archer, S.L. Kosakovsky Pond, Y.S. Chung, S. Penugonda, J.G. Chipman, C.V. Fletcher, T.W. Schacker, M.H. Malim, A. Rambaut, A.T. Haase, A.R. Mclean, S.M. Wolinsky Persistent HIV-1 replication maintains the tissue reservoir during therapy Nature 2016 51 56

[9] Y. Fukazawa, R. Lum, A.A. Okoye, H. Park, K. Matsuda, J.Y. Bae, S.I. Hagen, R. Shoemaker, C. Deleage, C. Lucero, D. Morcock, T. Swanson, A.W. Legasse, M.K. Axthelm, J. Hesselgesser, R. Geleziunas, V.M. Hirsch, P.T. Edlefsen, M. Piatak, J.D. Estes, J.D. Lifson, L.J. Picker B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers Nat Med. 2015 132 139

[10] A. Licht, G. Alter A drug-free zone–lymph nodes as a safe haven for HIV Cell Host Microbe 2016 275 276

[11] G. Bocharov, A. Danilov, Yu. Vassilevski, G.I. Marchuk, V.A. Chereshnev, B. Ludewig Reaction-diffusion modelling of interferon distribution in secondary lymphoid organs Math. Model. Nat. Phenom. 2011 13 26

[12] G.A. Bocharov, A.A. Danilov, Y.V. Vassilevski, G.I. Marchuk, V.A. Chereshnev, B. Ludewig Simulation of the interferon-mediated protective field in lymphoid organs with their spatial and functional organization taken into consideration Doklady Biological Sciences 2011 194 196

[13] T. Junt, E. Scandella, B. Ludewig Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence Nature Reviews Immunology. 2008 764 775

[14] T. Lammermann, M. Sixt The microanatomy of T-cell responses Immunological Reviews 2008 26 43

[15] G. Bocharov, R. Züst, L. Cervantes-Barragan, T. Luzyanina, E. Chiglintsev, V.A. Chereshnev, V. Thiel, B. Ludewig A systems immunology approach to plasmacytoid dendritic cell function in cytopathic virus infections PLoS Pathogens 2010 e1001017

[16] J. Keener, J. Sneyd. Mathematical Physiology. Springer-Verlag, New York, 2009.

[17] R. Savinkov, A. Kislitsyn, D.J. Watson, R. Van Loon, I. Sazonov, M. Novkovic, L. Onder, G. Bocharov Data-driven modelling of the FRC network for studying the fluid flow in the conduit system Engineering Applications of Artificial Intelligence 2016

[18] M. Jafarnejad, M.C. Woodruff, D.C. Zawieja, M.C. Carroll, J.E. Moore Modeling lymph flow and fluid exchange with blood vessels in lymph nodes Lymphatic research and biology 2015 234 247

[19] A. Kislitsyn, R. Savinkov, M. Novkovic, L. Onder, G. Bocharov Computational approach to 3D modeling of the lymph node geometry Computation 2015 222 234

[20] L.J. Cooper, J.P. Heppell, G.F. Clough, B. Ganapathisubramani, T. Roose An image-based model of fluid flow through lymph nodes Bull. Math. Biol. 2016 52 71

[21] F. Billy, J. Clairambault Designing proliferating cell population models with functional targets for control by anti-cancer drugs Discrete and Continuous Dynamical Systems - Series B 2013 865 889

[22] F. Billy, J. Clairambault, F. Delaunay, C. Feillet, N. Robert Age-structured cell population model to study the influence of growth factors on cell cycle dynamics Mathematical Biosciences and Engineering 2013 1 17

[23] F. Billy, J. Clairambault, Q. Fercoq. Optimisation of cancer drug treatments using cell population dynamics. In: A. Friedman, E. Kashdan, U. Ledzewicz, H. Schättler (eds.) Mathematical Models and Methods in Biomedicine, Lecture Notes on Mathematical Modelling in the Life Sciences, 265–309. Springer, New York, 2013.

[24] F. Billy, J. Clairambault, O. Fercoq, S. Gaubert, T. Lepoutre, T. Ouillon, S. Saito Synchronisation and control of proliferation in cycling cell population models with age structure Mathematics and Computers in Simulation 2014 66 94

[25] J. Clairambault Deterministic mathematical modelling for cancer chronotherapeutics: cell population dynamics and treatment optimisation "Mathematical Oncology 2013” 265 294 2014

[26] A. Lorz, T. Lorenzi, M.E. Hochberg, J. Clairambault, B. Perthame Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies ESAIM: Mathematical Modelling and Numerical Analysis 2013 377 399

[27] A. Lorz, T. Lorenzi, J. Clairambault, A. Escargueil, B. Perthame Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors Bull. Math. Biol. 2015 1 22

[28] B. Dahlback Haematology: blood coagulation The Lancet 2000 1627 1632

[29] L. de Pillis, E.J. Graham, K. Hood, Y. Ma, A. Radunskaya, J. Simons. Injury-initiated clot formation under flow: a mathematical model with warfarin treatment. In: Applications of Dynamical Systems in Biology and Medicine, 75–98. Springer New York, 2015.

[30] E.V. Dydek, E.L. Chaikof Simulated thrombin generation in the presence of surface-bound heparin and circulating tissue factor Annals of Biomedical Engineering 2016 1072 1084

[31] T. Wajima, G.K. Isbister, S.B. Duffull A comprehensive model for the humoral coagulation network in humans Clinical Pharmacology and Therapeutics 2009 290 298

[32] R. Burghaus, K. Coboeken, T. Gaub, L. Kuepfer, A. Sensse, H.U. Siegmund, J. Lippert Evaluation of the efficacy and safety of rivaroxaban using a computer model for blood coagulation PLoS One 2011 e17626

[33] S.D. Bungay, P.A. Gentry, R.D. Gentry A mathematical model of lipid-mediated thrombin generation Mathematical Medicine and Biology 2003 105 129

[34] M.F. Hockin, K.C. Jones, S.J. Everse, K.G. Mann A model for the stoichiometric regulation of blood coagulation Journal of Biological Chemistry 2002 18322 18333

[35] R. Burghaus, K. Coboeken, T. Gaub, C. Niederalt, A. Sensse, H.U. Siegmund, J. Lippert Computational investigation of potential dosing schedules for a switch of medication from warfarin to rivaroxaban-an oral, direct Factor Xa inhibitor Frontiers in Physiology 2013 417 417

[36] X. Zhou, D.R.H. Huntjens, R.A.H.J. Gilissen A systems pharmacology model for predicting effects of factor Xa inhibitors in healthy subjects: assessment of pharmacokinetics and binding kinetics CPT: Pharmacometrics & Systems Pharmacology 2015 650 659

[37] I. V. Gribkova, E. N. Lipets, I. G. Rekhtina, A. I. Bernakevich, D. B. Ayusheev, R. A. Ovsepyan, E. I. Sinauridze 2016 The modification of the thrombin generation test for the clinical assessment of dabigatran etexilate efficiency Scientific Reports

[38] L. Cromme, H. Völler, F. Gäbler, A. Salzwedel, U. Taborski Computer-aided dosage in oral anticoagulation therapy using phenprocoumon H'´amostaseologie 2010 183 189

[39] A. Gulati, G.K. Isbister, S.B. Duffull Scale reduction of a systems coagulation model with an application to modeling pharmacokinetic-pharmacodynamic data CPT: Pharmacometrics & Systems Pharmacology 2014 1 8

[40] D. Luan. Computational modeling and simulation of thrombus formation. Doctoral dissertation, Cornell University, 2009.

[41] L.D. Lynd, B.J. O’ Brien Advances in risk-benefit evaluation using probabilistic simulation methods: an application to the prophylaxis of deep vein thrombosis Journal of Clinical Epidemiology 2004 795 803

[42] L.A. Parunov, O.A. Fadeeva, A.N. Balandina, N.P. Soshitova, K.G. Kopylov, M.A. Kumskova, M. A. Panteleev Improvement of spatial fibrin formation by the anti-TFPI aptamer BAX499: changing clot size by targeting extrinsic pathway initiation Journal of Thrombosis and Haemostasis 2011 1825 1834

[43] K. Brummel-Ziedins Models for thrombin generation and risk of disease Journal of Thrombosis and Haemostasis 2013 212 223

[44] A. Undas, M. Gissel, B. Kwasny-Krochin, P. Gluszko, K.G. Mann, K.E. Brummel-Ziedins Thrombin generation in rheumatoid arthritis: dependence on plasma factor composition Thrombosis and Haemostasis 2010 224 230

[45] L.E. Clegg, F. Mac Gabhann Systems biology of the microvasculature Integrative Biology 2015 498 512

[46] K.E. Brummel-Ziedins, C.Y. Vossen, S. Butenas, K.G. Mann, F.R. Rosendaal Thrombin generation profiles in deep venous thrombosis Journal of Thrombosis and Haemostasis 2015 2497 2505

[47] A. Bouchnita, G. Bocharov, A. Meyerhans, V. Volpert Hybrid approach to model the spatial regulation of T cell responses BMC Immunology 2016

[48] B. Ludewig, J.V. Stein, J. Sharpe, L. Cervantes-Barragan, V. Thiel, G. Bocharov A global "imaging’’ view on systems approaches in immunology Eur J Immunol. 2012 3116 3125

[49] S.R. Allerheiligen Impact of modeling and simulation: myth or fact? Clin. Pharmacol. Ther. 2014 413 415

[50] P.L. Bonate What happened to the modeling and simulation revolution? Clin. Pharmacol. Ther. 2014 416 417

[51] B.J. Druker, M. Talpaz, D.J. Resta, B. Peng, E. Buchdunger, J.M. Ford, N.B. Lydon, H. Kantarjian, R. Capdeville, S. Ohno-Jones, C.L. Sawyers Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia N. Engl. J. Med. 2001 1031 1037

[52] T. Haferlach. Molecular genetic pathways as therapeutic targets in AML. In: Educational book, ASH 2008 meeting, 400–411, 2008.

[53] R.H. Chisholm, T. Lorenzi, J. Clairambault Cell population heterogeneity and evolution towards drug resistance in cancer: biological and mathematical assessment, theoretical treatment optimisation Biochimica et Biophysica Acta 2016 2627 2645

[54] B. Brutovsky, D. Horvath. Structure of intratumor heterogeneity: Is cancer hedging its bets? arXiv, 1307.0607, 2013.

[55] R.H. Chisholm, T. Lorenzi, A. Lorz, A.K. Larsen, L.N. Almeida, A. Escargueil, J. Clairambault Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, nongenetic instability, and stress-induced adaptation Cancer Res. 2015 930 939

[56] A. Wu, Q. Zhang, G. Lambert, Z. Khin, R.A. Gatenby, H.J. Kim, N. Pourmand, K. Bussey, P.C. W. Davies, J.C. Sturma, R.H. Austin Ancient hot and cold genes and chemotherapy resistance emergence Proc. Nat. Acad. Sci. USA 2015 10467 10472

Cité par Sources :