Voir la notice de l'article provenant de la source EDP Sciences
G. Bocharov 1 ; A. Bouchnita 2, 3, 4, 5 ; J. Clairambault 6, 7 ; V. Volpert 4, 5, 8
@article{MMNP_2016_11_6_a0, author = {G. Bocharov and A. Bouchnita and J. Clairambault and V. Volpert}, title = {Mathematics of {Pharmacokinetics} and {Pharmacodynamics:} {Diversity} of {Topics,} {Models} and {Methods}}, journal = {Mathematical modelling of natural phenomena}, pages = {1--8}, publisher = {mathdoc}, volume = {11}, number = {6}, year = {2016}, doi = {10.1051/mmnp/201611601}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611601/} }
TY - JOUR AU - G. Bocharov AU - A. Bouchnita AU - J. Clairambault AU - V. Volpert TI - Mathematics of Pharmacokinetics and Pharmacodynamics: Diversity of Topics, Models and Methods JO - Mathematical modelling of natural phenomena PY - 2016 SP - 1 EP - 8 VL - 11 IS - 6 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611601/ DO - 10.1051/mmnp/201611601 LA - en ID - MMNP_2016_11_6_a0 ER -
%0 Journal Article %A G. Bocharov %A A. Bouchnita %A J. Clairambault %A V. Volpert %T Mathematics of Pharmacokinetics and Pharmacodynamics: Diversity of Topics, Models and Methods %J Mathematical modelling of natural phenomena %D 2016 %P 1-8 %V 11 %N 6 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611601/ %R 10.1051/mmnp/201611601 %G en %F MMNP_2016_11_6_a0
G. Bocharov; A. Bouchnita; J. Clairambault; V. Volpert. Mathematics of Pharmacokinetics and Pharmacodynamics: Diversity of Topics, Models and Methods. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 6, pp. 1-8. doi : 10.1051/mmnp/201611601. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611601/
[1] Parameter estimation using unidentified individual data in individual based models Math. Model. Nat. Phenom. 2016 9 27
, , ,[2] Physiologically structured cell population dynamic models with applications to combined drug delivery optimisation in oncology Math. Model. Nat. Phenom. 2016 45 70
,[3] An individualized blood coagulation model to predict INR therapeutic range during warfarin treatment Math. Model. Nat. Phenom. 2016 28 44
, , , , ,[4] Reaction mechanisms and kinetic constants used in mechanistic models of coagulation and fibrinolysis Math. Model. Nat. Phenom. 2016 71 90
,[5] Computational modeling of quiescent platelet energy metabolism in the context of whole-body glucose turnover Math. Model. Nat. Phenom. 2016 91 101
, ,[6] P. Macheras, A. Iliadis, Modeling in Biopharmaceutics, Pharmacokinetics and Pharmacodynamics, Homogeneous and Heterogeneous Approaches. Springer, (2006), 293–308.
[7] Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues Proc Natl Acad Sci U S A 2014 2307 2312
, , , , , , , , , , , , , , , ,[8] Persistent HIV-1 replication maintains the tissue reservoir during therapy Nature 2016 51 56
, , , , , , , , , , , , , , ,[9] B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers Nat Med. 2015 132 139
, , , , , , , , , , , , , , , , , , , , ,[10] A drug-free zone–lymph nodes as a safe haven for HIV Cell Host Microbe 2016 275 276
,[11] Reaction-diffusion modelling of interferon distribution in secondary lymphoid organs Math. Model. Nat. Phenom. 2011 13 26
, , , , ,[12] Simulation of the interferon-mediated protective field in lymphoid organs with their spatial and functional organization taken into consideration Doklady Biological Sciences 2011 194 196
, , , , ,[13] Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence Nature Reviews Immunology. 2008 764 775
, ,[14] The microanatomy of T-cell responses Immunological Reviews 2008 26 43
,[15] A systems immunology approach to plasmacytoid dendritic cell function in cytopathic virus infections PLoS Pathogens 2010 e1001017
, , , , , , ,[16] J. Keener, J. Sneyd. Mathematical Physiology. Springer-Verlag, New York, 2009.
[17] Data-driven modelling of the FRC network for studying the fluid flow in the conduit system Engineering Applications of Artificial Intelligence 2016
, , , , , , ,[18] Modeling lymph flow and fluid exchange with blood vessels in lymph nodes Lymphatic research and biology 2015 234 247
, , , ,[19] Computational approach to 3D modeling of the lymph node geometry Computation 2015 222 234
, , , ,[20] An image-based model of fluid flow through lymph nodes Bull. Math. Biol. 2016 52 71
, , , ,[21] Designing proliferating cell population models with functional targets for control by anti-cancer drugs Discrete and Continuous Dynamical Systems - Series B 2013 865 889
,[22] Age-structured cell population model to study the influence of growth factors on cell cycle dynamics Mathematical Biosciences and Engineering 2013 1 17
, , , ,[23] F. Billy, J. Clairambault, Q. Fercoq. Optimisation of cancer drug treatments using cell population dynamics. In: A. Friedman, E. Kashdan, U. Ledzewicz, H. Schättler (eds.) Mathematical Models and Methods in Biomedicine, Lecture Notes on Mathematical Modelling in the Life Sciences, 265–309. Springer, New York, 2013.
[24] Synchronisation and control of proliferation in cycling cell population models with age structure Mathematics and Computers in Simulation 2014 66 94
, , , , , ,[25] Deterministic mathematical modelling for cancer chronotherapeutics: cell population dynamics and treatment optimisation "Mathematical Oncology 2013” 265 294 2014
[26] Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies ESAIM: Mathematical Modelling and Numerical Analysis 2013 377 399
, , , ,[27] Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors Bull. Math. Biol. 2015 1 22
, , , ,[28] Haematology: blood coagulation The Lancet 2000 1627 1632
[29] L. de Pillis, E.J. Graham, K. Hood, Y. Ma, A. Radunskaya, J. Simons. Injury-initiated clot formation under flow: a mathematical model with warfarin treatment. In: Applications of Dynamical Systems in Biology and Medicine, 75–98. Springer New York, 2015.
[30] Simulated thrombin generation in the presence of surface-bound heparin and circulating tissue factor Annals of Biomedical Engineering 2016 1072 1084
,[31] A comprehensive model for the humoral coagulation network in humans Clinical Pharmacology and Therapeutics 2009 290 298
, ,[32] Evaluation of the efficacy and safety of rivaroxaban using a computer model for blood coagulation PLoS One 2011 e17626
, , , , , ,[33] A mathematical model of lipid-mediated thrombin generation Mathematical Medicine and Biology 2003 105 129
, ,[34] A model for the stoichiometric regulation of blood coagulation Journal of Biological Chemistry 2002 18322 18333
, , ,[35] Computational investigation of potential dosing schedules for a switch of medication from warfarin to rivaroxaban-an oral, direct Factor Xa inhibitor Frontiers in Physiology 2013 417 417
, , , , , ,[36] A systems pharmacology model for predicting effects of factor Xa inhibitors in healthy subjects: assessment of pharmacokinetics and binding kinetics CPT: Pharmacometrics & Systems Pharmacology 2015 650 659
, ,[37] The modification of the thrombin generation test for the clinical assessment of dabigatran etexilate efficiency Scientific Reports
, , , , , , 2016[38] Computer-aided dosage in oral anticoagulation therapy using phenprocoumon H'´amostaseologie 2010 183 189
, , , ,[39] Scale reduction of a systems coagulation model with an application to modeling pharmacokinetic-pharmacodynamic data CPT: Pharmacometrics & Systems Pharmacology 2014 1 8
, ,[40] D. Luan. Computational modeling and simulation of thrombus formation. Doctoral dissertation, Cornell University, 2009.
[41] Advances in risk-benefit evaluation using probabilistic simulation methods: an application to the prophylaxis of deep vein thrombosis Journal of Clinical Epidemiology 2004 795 803
,[42] Improvement of spatial fibrin formation by the anti-TFPI aptamer BAX499: changing clot size by targeting extrinsic pathway initiation Journal of Thrombosis and Haemostasis 2011 1825 1834
, , , , , ,[43] Models for thrombin generation and risk of disease Journal of Thrombosis and Haemostasis 2013 212 223
[44] Thrombin generation in rheumatoid arthritis: dependence on plasma factor composition Thrombosis and Haemostasis 2010 224 230
, , , , ,[45] Systems biology of the microvasculature Integrative Biology 2015 498 512
,[46] Thrombin generation profiles in deep venous thrombosis Journal of Thrombosis and Haemostasis 2015 2497 2505
, , , ,[47] Hybrid approach to model the spatial regulation of T cell responses BMC Immunology 2016
, , ,[48] A global "imaging’’ view on systems approaches in immunology Eur J Immunol. 2012 3116 3125
, , , , ,[49] Impact of modeling and simulation: myth or fact? Clin. Pharmacol. Ther. 2014 413 415
[50] What happened to the modeling and simulation revolution? Clin. Pharmacol. Ther. 2014 416 417
[51] Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia N. Engl. J. Med. 2001 1031 1037
, , , , , , , , , ,[52] T. Haferlach. Molecular genetic pathways as therapeutic targets in AML. In: Educational book, ASH 2008 meeting, 400–411, 2008.
[53] Cell population heterogeneity and evolution towards drug resistance in cancer: biological and mathematical assessment, theoretical treatment optimisation Biochimica et Biophysica Acta 2016 2627 2645
, ,[54] B. Brutovsky, D. Horvath. Structure of intratumor heterogeneity: Is cancer hedging its bets? arXiv, 1307.0607, 2013.
[55] Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, nongenetic instability, and stress-induced adaptation Cancer Res. 2015 930 939
, , , , , ,[56] Ancient hot and cold genes and chemotherapy resistance emergence Proc. Nat. Acad. Sci. USA 2015 10467 10472
, , , , , , , , , ,Cité par Sources :