Fighting Enemies and Noise: Competition of Residents and Invaders in a Stochastically Fluctuating Environment
Mathematical modelling of natural phenomena, Tome 11 (2016) no. 5, pp. 137-157.

Voir la notice de l'article provenant de la source EDP Sciences

The possible control of competitive invasion by infection of the invader and multiplicative noise is studied. The basic model is the Lotka-Volterra competition system with emergent carrying capacities. Several stationary solutions of the non-infected and infected system are identified as well as parameter ranges of bistability. The latter are used for the numerical study of invasion phenomena. The diffusivities, the infection but in particular the white and coloured multiplicative noise are the control parameters. It is shown that not only competition, possible infection and mobilities are important drivers of the invasive dynamics but also the noise and especially its color and the functional response of populations to the emergence of noise.
DOI : 10.1051/mmnp/201611509

I. Siekmann 1, 2, 3 ; H. Malchow 4

1 Systems Biology Laboratory, Melbourne School of Engineering The University of Melbourne, Parkville 3010 VIC Australia
2 Centre for Systems Genomics, University of Melbourne, Australia
3 Felix Bernstein Institute for Mathematical Statistics, Georg August University of Göttingen, Germany
4 Institute of Environmental Systems Research, School of Mathematics / Computer Science, Osnabrück University, Barbarastr. 12, 49076 Osnabrück, Germany
@article{MMNP_2016_11_5_a8,
     author = {I. Siekmann and H. Malchow},
     title = {Fighting {Enemies} and {Noise:} {Competition} of {Residents} and {Invaders} in a {Stochastically} {Fluctuating} {Environment}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {137--157},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2016},
     doi = {10.1051/mmnp/201611509},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611509/}
}
TY  - JOUR
AU  - I. Siekmann
AU  - H. Malchow
TI  - Fighting Enemies and Noise: Competition of Residents and Invaders in a Stochastically Fluctuating Environment
JO  - Mathematical modelling of natural phenomena
PY  - 2016
SP  - 137
EP  - 157
VL  - 11
IS  - 5
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611509/
DO  - 10.1051/mmnp/201611509
LA  - en
ID  - MMNP_2016_11_5_a8
ER  - 
%0 Journal Article
%A I. Siekmann
%A H. Malchow
%T Fighting Enemies and Noise: Competition of Residents and Invaders in a Stochastically Fluctuating Environment
%J Mathematical modelling of natural phenomena
%D 2016
%P 137-157
%V 11
%N 5
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611509/
%R 10.1051/mmnp/201611509
%G en
%F MMNP_2016_11_5_a8
I. Siekmann; H. Malchow. Fighting Enemies and Noise: Competition of Residents and Invaders in a Stochastically Fluctuating Environment. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 5, pp. 137-157. doi : 10.1051/mmnp/201611509. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611509/

[1] R. M. Anderson, R. M. May The invasion, persistence and spread of infectious diseases within animal and plant communities Philosophical Transactions of the Royal Society of London B 1986 533 570

[2] S. Bedhomme, P. Agnew, Y. Vital, C. Sidobre, Y. Michalakis Prevalence-dependent costs of parasite virulence PLoS Biology 2005 e262

[3] G. E, P. Box, M. E. Muller A note on the generation of random normal deviates Annals of Mathematical Statistics 1958 610 611

[4] J.-B. Burie, A. Calonnec, M. Langlais. Modeling of the invasion of a fungal disease over a vineyard. In A. Deutsch, R. B. de la Parra, R. J. de Boer, O. Diekmann, P. Jagers, E. Kisdi, M. Kretzschmar, P. Lansky, H. Metz (Eds.), Mathematical Modeling of Biological Systems, Volume II. Epidemiology, Evolution and Ecology, Immunology, Neural Systems and the Brain, and Innovative Mathematical Methods, Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, 2008, pages 11–21.

[5] E. M. Coombs, J. K. Clark, G. L. Piper, A. F. Cofrancesco Jr. (Eds.). Biological control of invasive plants in the United States. Oregon State University Press, Corvallis OR, 2004.

[6] A. d’Onofrio (Ed.). Bounded noises in physics, biology, and engineering. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser–Springer, New York, 2013.

[7] J. A. Drake, H. A. Mooney (Eds.). Biological invasions: a global perspective, vol. 27 of SCOPE. Wiley, Chichester, 1989.

[8] H. I. Freedman A model of predator-prey dynamics as modified by the action of a parasite Mathematical Biosciences 1990 143 155

[9] J. S. Fulda The logistic equation and population decline Journal of Theoretical Biology 1981 255 259

[10] L. Q. Gao, H. W. Hethcote Disease transmission models with density dependent demographics Journal of Mathematical Biology 1992 717 731

[11] D. García-Álvarez. A comparison of a few numerical schemes for the integration of stochastic differential equations in the Stratonovich interpretation. arXiv:1102.4401v1 [physics.comp-ph], (2011).

[12] J. García-Ojalvo, J. M. Sancho. Noise in spatially extended systems. Institute for Nonlinear Science. Springer, New York, 1999.

[13] J. García-Ojalvo, J. M. Sancho, L. Ramírez-Piscina Generation of spatiotemporal colored noise Physical Review E 1992 4670 4675

[14] K. P. Hadeler, H. I. Freedman Predator-prey populations with parasitic infection Journal of Mathematical Biology 1989 609 631

[15] J. M Halley. Ecology, evolution and l/f-noise Trends in Ecology & Evolution 1996 33 37

[16] J. M. Halley, P. Inchausti The increasing importance of 1 Fluctuations and Noise Letters 2004 R1 R26

[17] K. Harley, I. W. Forno. Biological control of weeds: a handbook for practitioners and students. Inkata Press, Melbourne, 1992.

[18] R. Hengeveld (Ed.). Dynamics of biological invasions. Chapman and Hall, London, 1989.

[19] F. M. Hilker, H. Malchow Strange periodic attractors in a prey-predator system with infected prey Mathematical Population Studies 2006 119 134

[20] W. H. Hundsdorfer, J. G. Verwer Stability and convergence of the Peaceman-Rachford ADI method for initial-boundary value problems Mathematics of Computation 1989 81 101

[21] K. Itó On stochastic differential equations Memoirs of the American Mathematical Society 1951 1 51

[22] R. Jarrow, P. Protter. A short history of stochastic integration and mathematical finance: the early years, 1880–1970. In Anirban DasGupta (Ed.), A Festschrift for Herman Rubin, vol. 45 of Lecture Notes – Monograph Series. Institute of Mathematical Statistics, Beachwood, Ohio, USA, 2004, pages 75–91.

[23] M. Julien, G. White (Eds.). Biological control of weeds: theory and practical application. No. 49 in ACIAR Monograph Series. Australian Centre for International Agricultural Research, Bruce ACT, 1997.

[24] N. Keiding Extinction and exponential growth in random environments Theoretical Population Biology 1975 49 63

[25] P. E. Kloeden, E. Platen. Numerical solution of stochastic differential equations, vol. 23 of Applications of Mathematics. Springer, Berlin, 1999.

[26] E. Kuno Some strange properties of the logistic equation defined with r and K: Inherent effects or artefacts? Researches on Population Ecology 1991 33 39

[27] T. G. Kurtz. Diffusion approximations for branching processes. In K. B. Arthreya, P. E. Ney (Eds.), Branching processes, vol. 5 of Conférence Saint Hippolyte, Québec, 1976. New York, 1978, pages 269–292.

[28] V. Lehmann. Invasion, Konkurrenz und Kontrolle einer fremden Art. Diplomarbeit, Institut für Umweltsystemforschung, Fachbereich Mathematik/Informatik, Universität Osnabrück (2011).

[29] H. Malchow, A. James, R. Brown Competitive and diffusive invasion in a noisy environment Mathematical Medicine and Biology 2011 153 163

[30] H. Malchow, A. James, R. Brown. Control of competitive bioinvasion. In M. E. Lewis, P. K. Maini, S. V. Petrovskii (Eds.), Dispersal, individual movement and spatial ecology: A mathematical perspective, vol. 2071 of Lecture Notes in Mathematics. Springer, Berlin, 2013, pages 293–305.

[31] H. Malchow, L. Schimansky-Geier. Noise and diffusion in bistable nonequilibrium systems, vol. 5 of Teubner-Texte zur Physik. Teubner-Verlag, Leipzig, 1985.

[32] J. Mallet The struggle for existence: how the notion of carrying capacity, K, obscures the links between demography, Darwinian evolution, and speciation Evolutionary Ecology Research 2012 627 665

[33] M. Matsumoto, T. Nishimura Mersenne Twister: a 623-dimensionally equidistributed uniform pseudorandom number generator ACM Transactions on Modeling and Computer Simulation 1998 3 30

[34] R. M. May. Stability and complexity in model ecosystems, vol. 6 of Monographs in Population Biology. Princeton University Press, Princeton, 1973.

[35] R. M. May Stability in randomly uctuating versus deterministic environments The American Naturalist 1973 621 650

[36] H. Mccallum, N. Barlow, J. Hone How should pathogen transmission be modelled? Trends in Ecology & Evolution 2001 295 300

[37] P. B. Mcevoy, E. M. Coombs Biological control of plant invaders: Regional patterns, field experiments, and structured population models Ecological Applications 1999 387 401

[38] P.-A. Meyer Stochastic processes from 1950 to the present Electronic Journal for History of Probability and Statistics 2009 1 42

[39] G. N. Milstein. Chislennoe integrirovanie stokhasticheskikh differentsial’nykh uravnenii. Izdatel’stvo Ural’skogo Universiteta, Sverdlovsk, 1988.

[40] G. N. Milstein. Numerical integration of stochastic differential equations, vol. 313 of Mathematics and Its Applications. Kluwer Academic Publishers, Dordrecht, 1995.

[41] D. Mollison Modelling biological invasions: chance, explanation, prediction Philosophical Transactions of the Royal Society of London B 1986 675 693

[42] C. Mueller. Some tools and results for parabolic stochastic partial differential equations. In D. Khoshnevisan, F. Rassoul-Agha (Eds.), A minicourse on stochastic partial differential equations, vol. 1962 of Lecture Notes in Mathematics, chap. 4. Springer, Berlin, Heidelberg, 2009, pages 111–144.

[43] A. Nitzan, P. Ortoleva, J. Ross Nucleation in systems with multiple stationary states Faraday Symposia of the Chemical Society 1974 241 253

[44] D. W. Peaceman, H. H. Rachford The numerical solution of parabolic and elliptic differential equations Journal of the Society for Industrial and Applied Mathematics 1955 28 41

[45] D. Pimentel (Ed.). Biological invasions. Economic and environmental costs of alien plant, animal, and microbe species. CRC Press, Boca Raton, 2002.

[46] J. Ripa, P. Lundberg, V. Kaitala A general theory of environmental noise in ecological food webs American Naturalist 1998 256 263

[47] L. Ruokolainen, A. Lindén, V. Kaitala, M. S. Fowler Ecological and evolutionary dynamics under coloured environmental variation Trends in Ecology and Evolution 2009 555 563

[48] D. F. Sax, J. J. Stachowicz, S. D. Gaines (Eds.). Species invasions. Insights into ecology, evolution, and biogeography. Sinauer, Sunderland, 2005.

[49] T. Schaffter. Numerical integration of SDEs: a short tutorial (2010). Laboratory of Intelligent Systems, Swiss Federal Institute of Technology at Lausanne (EPFL), Switzerland.

[50] N. Shigesada, K. Kawasaki. Biological invasions: Theory and practice. Oxford University Press, Oxford, 1997.

[51] M. Sieber, H. Malchow, F. M. Hilker Disease-induced modification of prey competition in eco-epidemiological models Ecological Complexity 2014 74 82

[52] I. Siekmann. Mathematical modelling of pathogen-prey-predator interactions. Verlag Dr. Hut, München, 2009.

[53] I. Siekmann, H. Malchow Local collapses in the Truscott-Brindley model Mathematical Modelling of Natural Phenomena 2008 114 130

[54] W. L. Smith Necessary conditions for almost sure extinction of a branching process with random environment Annals of Mathematical Statistics 1968 2136 2140

[55] W. L. Smith, W. E. Wilkinson On branching processes in random environments Annals of Mathematical Statistics 1969 814 827

[56] J. H. Steele A comparison of terrestrial and marine ecological systems Nature 1985 355 358

[57] R. L. Stratonovich. Topics in the theory of random noise, vol. 3 (12) of Mathematics and Its Applications. Gordon and Breach, New York, 19631967.

[58] J. W. Thomas. Numerical partial differential equations: Finite difference methods, vol. 22 of Texts in Applied Mathematics. Springer, New York, 1995.

[59] P. Van Den Driessche, M. L. Zeeman Disease induced oscillations between two competing species SIAM Journal of Applied Dynamical Systems 2004 601 619

[60] J. E. van der Plank. Host-pathogen interactions in plant disease. Academic Press, New York, 1982.

[61] D. A. Vasseur, P. Yodzis The color of environmental noise Ecology 2004 1146 1152

[62] E. Venturino. The influence of diseases on Lotka-Volterra systems. IMA Preprint Series 913, Institute of Mathematics and its Applications, University of Minnesota, Minneapolis (1992).

[63] E. Venturino The influence of diseases on Lotka-Volterra systems Rocky Mountain Journal of Mathematics 1994 381 402

[64] E. Venturino The effect of diseases on competing species Mathematical Biosciences 2001 111 131

[65] J. B. Walsh. An introduction to stochastic partial differential equations. In R. Carmona, H. Kesten, J. B. Walsh (Eds.), École d’été de probabilités de Saint-Flour XIV - 1984, vol. 1180 of Lecture Notes in Mathematics. Springer, Berlin, 1986, pages 265–437.

[66] M. Williamson. Biological invasions, vol. 15 of Population and Community Biology Series. Chapman Hall, London, 1996.

[67] T. Woyzichovski. Der Einuss von Rauschen und Infektion in einem Konkurrenzmodell fremder und indigener Spezies. Diplomarbeit, Institut für Umweltsystemforschung, Fachbereich Mathematik/Informatik, Universität Osnabrück (2013).

Cité par Sources :