Modeling of Sensory Characteristics Based on the Growth of Food Spoilage Bacteria
Mathematical modelling of natural phenomena, Tome 11 (2016) no. 5, pp. 119-136.

Voir la notice de l'article dans EDP Sciences

During last years theoretical works shed new light and proposed new hypothesis on the mechanisms which regulate the time behaviour of biological populations in different natural systems. Despite of this, a relevant physical and biological issue such as the role of environmental variables in ecological systems is still an open question. Filling this gap of knowledge is a crucial task for a deeper comprehension of the dynamics of biological populations in real ecosystems.The aim of this work is to study how dynamics of food spoilage bacteria influences the sensory characteristics of fresh fish specimens. This topic is worth of investigation in view of a better understanding of the role played by the bacterial growth on the organoleptic properties, and becomes crucial in the context of quality evaluation and risk assessment of food products. We therefore analyze and reproduce the time behaviour, in fresh fish specimens, of sensory characteristics starting from the growth curves of two spoilage bacterial communities.The theoretical study, initially based on a deterministic model, is performed by using the temperature profiles obtained during the experimental analysis. As a first step, a model of predictive microbiology is used to reproduce the experimental behaviour of the two bacterial populations. Afterwards, the theoretical bacterial growths are converted, through suitable differential equations, into “sensory” scores, based on the Quality Index Method (QIM), a scoring system for freshness and quality sensory estimation of fishery products. As a third step, the theoretical curves of QIM scores are compared with the experimental data obtained by sensory analysis. Finally, the differential equations for QIM scores are modified by adding terms of multiplicative white noise, which mimics the effects of uncertainty and variability in sensory analysis. A better agreement between experimental and theoretical QIM scores is observed, in some cases, in the presence of suitable values of noise intensity respect to the deterministic analysis.
DOI : 10.1051/mmnp/201611508

D. Valenti 1 ; G. Denaro 2 ; F. Giarratana 3 ; A. Giuffrida 3 ; S. Mazzola 2 ; G. Basilone 2 ; S. Aronica 2 ; A. Bonanno 2 ; B. Spagnolo 1, 4, 5

1 Dipartimento di Fisica e Chimica, Università di Palermo, Group of Interdisciplinary Theoretical Physics and CNISM, Unità di Palermo, Viale delle Scienze, Ed. 18, I-90128 Palermo, Italy
2 Istituto per l’Ambiente Marino Costiero, CNR, U.O.S. di Capo Granitola, Via del Faro 3, I-91020 Campobello di Mazara (TP), Italy
3 Dipartimento di Scienze Veterinarie, Università di Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy
4 Radiophysics Department, Lobachevsky State University, Nizhniy Novgorod, Russia
5 Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Italy
@article{MMNP_2016_11_5_a7,
     author = {D. Valenti and G. Denaro and F. Giarratana and A. Giuffrida and S. Mazzola and G. Basilone and S. Aronica and A. Bonanno and B. Spagnolo},
     title = {Modeling of {Sensory} {Characteristics} {Based} on the {Growth} of {Food} {Spoilage} {Bacteria}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {119--136},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2016},
     doi = {10.1051/mmnp/201611508},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611508/}
}
TY  - JOUR
AU  - D. Valenti
AU  - G. Denaro
AU  - F. Giarratana
AU  - A. Giuffrida
AU  - S. Mazzola
AU  - G. Basilone
AU  - S. Aronica
AU  - A. Bonanno
AU  - B. Spagnolo
TI  - Modeling of Sensory Characteristics Based on the Growth of Food Spoilage Bacteria
JO  - Mathematical modelling of natural phenomena
PY  - 2016
SP  - 119
EP  - 136
VL  - 11
IS  - 5
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611508/
DO  - 10.1051/mmnp/201611508
LA  - en
ID  - MMNP_2016_11_5_a7
ER  - 
%0 Journal Article
%A D. Valenti
%A G. Denaro
%A F. Giarratana
%A A. Giuffrida
%A S. Mazzola
%A G. Basilone
%A S. Aronica
%A A. Bonanno
%A B. Spagnolo
%T Modeling of Sensory Characteristics Based on the Growth of Food Spoilage Bacteria
%J Mathematical modelling of natural phenomena
%D 2016
%P 119-136
%V 11
%N 5
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611508/
%R 10.1051/mmnp/201611508
%G en
%F MMNP_2016_11_5_a7
D. Valenti; G. Denaro; F. Giarratana; A. Giuffrida; S. Mazzola; G. Basilone; S. Aronica; A. Bonanno; B. Spagnolo. Modeling of Sensory Characteristics Based on the Growth of Food Spoilage Bacteria. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 5, pp. 119-136. doi : 10.1051/mmnp/201611508. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611508/

[1] N. V. Agudov, A. A. Dubkov, B. Spagnolo Escape from a metastable state with fluctuating barrier Physica A 2003 144 151

[2] M. Asslani, F. Di Patti, D. Fanelli Stochastic Turing patterns on a network Phys. Rev. E 2012 046105

[3] G. Augello, D. Valenti, B. Spagnolo Non-Gaussian noise effects in the dynamics of a short overdamped Josephson junction Eur. Phys. J. B 2010 225 234

[4] J. Baranyi, T.A. Roberts A dynamic approach to predicting bacterial growth in food Int. J. Food Microbiol. 1994 277 294

[5] J. Baranyi, T. P. Robinson, A. Kaloti, B. M. Mackey Predicting growth of Brochothrix thermosphacta at changing temperature Int. J. Food Microbiol. 1995 61 75

[6] R. Benzi, A. Sutera, A. Vulpiani The mechanism of stochastic resonance J. Phys. A: Math Gen. 1981 L453 L457

[7] R. Benzi, G. Parisi, A. Sutera, A. Vulpiani Stochastic resonance in climatic change Tellus 1982 10 16

[8] T. Biancalani, D. Fanelli, F. Di Patti Stochastic Turing patterns in the Brusselator model Phys. Rev. E 2010 046215

[9] G. Bonanno, D. Valenti, B. Spagnolo Role of Noise in a Market Model with Stochastic Volatility Eur. Phys. J. B 2006 405 409

[10] G. Bonanno, D. Valenti, B. Spagnolo Mean Escape Time in a System with Stochastic Volatility Phys. Rev. E 2007 016106

[11] H.A. Bremner A convenient easy to use system for estimating the quality of chilled seafood Proceedings of the Fish Processing Conference, Nelson, New Zealand, 23–25 April 1985 1985 59 703

[12] J. H. Brown, T. G. Whitham, S. K. M. Ernest, C. A. Gehring Complex species interactions and the dynamics of ecological systems: long-term experiments Science 2001 643 650

[13] J. D. Challenger, D. Fanelli, A. J. Mckane Intrinsic noise and discrete-time processes Phys. Rev. E 2013 040102(R)

[14] O. Chichigina, D. Valenti, B. Spagnolo A Simple Noise Model with Memory for Biological Systems Fluct. Noise Lett. 2005 L243 L250

[15] O. A Chichigina. Noise with memory as a model of lemming cycles Eur. Phys. J. B 2008 347 352

[16] O. A. Chichigina, A. A. Dubkov, D. Valenti, B. Spagnolo Stability in a system subject to noise with regulated periodicity Phys. Rev. E 2011

[17] S. Ciuchi, F. De Pasquale, B. Spagnolo Nonlinear Relaxation in the presence of an Absorbing Barrier Phys. Rev. E 1993 3915 3926

[18] P. Dalgaard, P. Buch, S. Silberg Seafood Spoilage Predictor–development and distribution of a product specific application software Int. J. Food Microbiol. 2002 343 349

[19] T. Dauxois, F. Di Patti, D. Fanelli, A. J. Mckane Enhanced stochastic oscillations in autocatalytic reactions Phys. Rev. E 2009 036112

[20] P. De Anna, F. Di Patti, D. Fanelli, A. J. Mckane, T. Dauxois Spatial model of autocatalytic reactions Phys. Rev. E 2010 056110

[21] G. Denaro, D. Valenti, A. La Cognata, B. Spagnolo, A. Bonanno, G. Basilone, S. Mazzola, S. W. Zgozi, S. Aronica, C. Brunet Spatio-temporal behaviour of the deep chlorophyll maximum in Mediterranean Sea: Development of a stochastic model for picophytoplankton dynamics Ecol. Complex. 2013 21 34

[22] G. Denaro, D. Valenti, B. Spagnolo, G. Basilone, S. Mazzola, S. W. Zgozi, S. Aronica, A. Bonanno Dynamics of two picophytoplankton groups in Mediterranean Sea: Analysis of the deep chlorophyll maximum by a stochastic advection-reaction-diffusion model PLoS ONE 2013 e66765

[23] E. J. Dens, K. M. Vereecken, J. F. Van Impe A prototype model structure for mixed microbial populations in homogeneous food products J. Theor. Biol. 1999 159 170

[24] A. Dubkov, B. Spagnolo Langevin Approach to Lévy flights in fixed potentials: Exact results for stationary probability distributions Acta Phys. Pol. B 2007 1745 1758

[25] A. Fiasconaro, D. Valenti, B. Spagnolo Role of the initial conditions on the enhancement of the escape time in static and fluctuating potentials Physica A 2003 136 143

[26] A. Fiasconaro, D. Valenti, B. Spagnolo Nonmonotonic behavior of spatiotemporal pattern formation in a noisy Lotka-Volterra system Acta Phys. Pol. B 2004 1491 1500

[27] A. Fiasconaro, A. Ochab–Marcinek, B. Spagnolo, E. Gudowska–Nowak Monitoring noise–resonant effects in cancer growth influenced by external fluctuations and periodic treatment Eur. Phys. J. B 2008 435 442

[28] A. Fiasconaro, B. Spagnolo Resonant activation in piece-wise linear asymmetric potentials Phys. Rev. E 2011 041122

[29] J. A. Freund, T. Pöschel (Eds.). Stochastic Processes in Physics, Chemistry, and Biology. Lecture Notes in Physics 557, Springer, Berlin, 2000.

[30] L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni Stochastic resonance Rev. Mod. Phys. 1998 223 287

[31] A. Giuffrida, G. Ziino, D. D’Ambrosi, V. Mandalà, A. Panebianco. Study on the transcutaneous bacterial migration in some fish species. In: Proceeding of XV National Congress of Italian Association of Veterinary Hygienists, (2005) 279–282. Tirrenia, Italy: A.I.V.I.

[32] A. Giuffrida, G. Ziino, D. Valenti, G. Donato, A. Panebianco Application of an interspecific competition model to predict the growth of Aeromonas hydrophila on fish surfaces during refrigerated storage Archiv für Lebensmittelhygiene 2007 136 141

[33] A. Giuffrida, D. Valenti, G. Ziino, A. Panebianco Study on the application of an interspecific competition model for the prediction of the microflora behaviour during the fermentation process of S. Angelo PGI salami Vet. Res. Commun. 2009 S229 S232

[34] A. Giuffrida, D. Valenti, G. Ziino, B. Spagnolo, A. Panebianco A stochastic interspecific competition model to predict the behaviour of Listeria monocytogenes in the fermentation process of a traditional Sicilian salami Eur. Food Res. Technol. 2009 767 775

[35] A. Giuffrida, D. Valenti, F. Giarratana, G. Ziino, A. Panebianco A new approach to modeling the shelf life of Gilthead seabream (Sparus aurata) Int. J. Food Sci. Tech. 2013 1235 1242

[36] C. Guarcello, D. Valenti, B. Spagnolo Phase dynamics in graphene-based Josephson junctions in the presence of thermal and correlated fluctuations Phys. Rev. B 2015 174519

[37] P. Hänggi, P. Talkner, M. Borkovec Reaction rate theory: fifty years after Kramers Rev. Mod. Phys. 1990 251 342

[38] A. Huidobro, A. Pastor, M. Tejada Quality Index Method developed for raw Gilthead Seabream (Sparus aurata) J. Food Sci. 2000 1202 1205

[39] H. H. Huss. Quality and Quality Changes in Fresh Fish. FAO Fisheries Technical Paper, 348 (1995), 130–131. Rome, Italy: FAO.

[40] P. Jung, P. Hänggi Amplification of small signals via stochastic resonance Phys. Rev. A 1991 8032 8042

[41] K. Koutsoumanis, G. J. E. Nychas Application of a systematic experimental procedure to develop a microbial model for rapid fish shelf life predictions Int. J. Food Microbiol. 2000 171 184

[42] A. La Barbera, B. Spagnolo Spatio-Temporal Patterns in Population Dynamics Physica A 2002 120 124

[43] A. La Cognata, D. Valenti, A. A. Dubkov, B. Spagnolo Dynamics of two competing species in the presence of Lévy noise sources Phys. Rev. E 2010 011121

[44] A. La Cognata, D. Valenti, B. Spagnolo, A. A. Dubkov Two competing species in super-diffusive dynamical regimes Eur. Phys. J. B 2010 273 279

[45] V. P. Lougovois, E. R. Kyranas, V. R. Kyrana Comparison of selected methods of assessing freshness quality and remaining storage life of iced Gilthead sea bream (Sparus aurata) Food Res. Int. 2003 551 560

[46] R. N. Mantegna, B. Spagnolo Stochastic Resonance in a Tunnel Diode Phys. Rev. E 1994 R1792 R1795

[47] R. N. Mantegna, B. Spagnolo Probability distribution of the Residence Times in Periodically Fluctuating Metastable Systems Int. J. Bif. Chaos 1998 783 790

[48] R. N. Mantegna, B. Spagnolo, L. Testa, M. Trapanese Stochastic Resonance in Magnetic Systems described by Preisach Hysteresis Model J. Appl. Phys. 2005 10E519

[49] K. Neumeyer, T. Ross, T.A. Mcmeekin Development of a predictive model to describe the effects of temperature and water activity on the growth of spoilage pseudomonads Int. J. Food Microbiol. 1997 45 54

[50] E. L. Pankratov, B. Spagnolo Optimization of impurity profile for p-n junction in heterostructures Eur. Phys. J. B 2005 15 19

[51] C. Parra–Rojas, J. D. Challenger, D. Fanelli, A. J. Mckane Intrinsic noise and two-dimensional maps: Quasicycles, quasiperiodicity, and chaos Phys. Rev. E 2014 032135

[52] D. Persano Adorno, N. Pizzolato, D. Valenti, B. Spagnolo External Noise Effects in doped semiconductors operating under sub-THz signals Rep. Math. Phys. 2012 171 179

[53] D. A. Ratkowsky, R. K. Lowry, T. A. Mcmeekin, A. N. Stokes, R. E. Chandler Model for bacterial cultures growth rate throughout the entire biokinetic temperature range J. Bacteriology 1983 1222 1226

[54] T. Ross, P. Dalgaard. Secondary models. In: Modeling Microbial Responses in Foods (Eds. R. C. McKeller, X. Lu), pp. 63–150, CRC Press, Boca Raton, USA, 2003.

[55] D. F. Russel, L. A. Wilkens, F. Moss Use of behavioural stochastic resonance by paddle fish for feeding Nature 2000 291 294

[56] B. Spagnolo, A. Fiasconaro, D. Valenti Noise Induced Phenomena in Lotka-Volterra Systems Fluct. Noise Lett. 2003 L177 L185

[57] B. Spagnolo, D. Valenti Volatility effects on the escape time in financial market models Int. J. Bifurcation and Chaos 2008 2775 2786

[58] B. Spagnolo, S. Spezia, L. Curcio, N. Pizzolato, A. Fiasconaro, D. Valenti, P. Lo Bue, E. Peri, S. Colazza Noise effects in two different biological systems Eur. Phys. J. B 2009 133 146

[59] D. Valenti, A. Fiasconaro, B. Spagnolo Stochastic resonance and noise delayed extinction in a model of two competing species Physica A 2004 477 486

[60] D. Valenti, A. Fiasconaro, B. Spagnolo Pattern formation and spatial correlation induced by the noise in two competing species Acta Phys. Pol. B 2004 1481 1489

[61] D. Valenti, L. Schimansky-Geier, X. Sailer, B. Spagnolo Moment Equations for a Spatially Extended System of Two Competitive Species Eur. Phys. J. B 2006 199 203

[62] D. Valenti, B. Spagnolo, G. Bonanno Hitting Time Distributions in Financial Markets Physica A 2007 311 320

[63] D. Valenti, G. Augello, B. Spagnolo Dynamics of a FitzHugh-Nagumo system subjected to autocorrelated noise Eur. Phys. J. B 2008 443 451

[64] D. Valenti, G. Denaro, D. Persano Adorno, N. Pizzolato, S. Zammito, B. Spagnolo Monte Carlo analysis of polymer translocation with deterministic and noisy electric fields Cent. Eur. J. Phys. 2012 560 567

[65] D. Valenti, G. Denaro, A. La Cognata, B. Spagnolo, A. Bonanno, G. Basilone, S. Mazzola, S. Zgozi, S. Aronica Picophytoplankton dynamics in noisy marine environment Acta Phys. Pol. B 2012 1227 1240

[66] D. Valenti, C. Guarcello, B. Spagnolo Switching times in long-overlap Josephson junctions subject to thermal fluctuations and non-Gaussian noise sources Phys. Rev. B 2014 214510

[67] D. Valenti, L. Magazzù, P. Caldara, B. Spagnolo Stabilization of quantum metastable states by dissipation Phys. Rev. B 2015 235412

[68] D. Valenti, G. Denaro, B. Spagnolo, F. Conversano, C. Brunet How diffusivity, thermocline and incident light intensity modulate the dynamics of deep chlorophyll maximum in Tyrrhenian Sea PLoS ONE 2015 e0115468

[69] R. C. Whiting, R. L. Buchanan A classification of models for predictive microbiology Food Microbiol. 1993 175 177

Cité par Sources :