Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2016_11_5_a6, author = {M. Banerjee and L. Zhang}, title = {Stabilizing {Role} of {Nonlocal} {Interaction} on {Spatio-temporal} {Pattern} {Formation}}, journal = {Mathematical modelling of natural phenomena}, pages = {103--118}, publisher = {mathdoc}, volume = {11}, number = {5}, year = {2016}, doi = {10.1051/mmnp/201611507}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611507/} }
TY - JOUR AU - M. Banerjee AU - L. Zhang TI - Stabilizing Role of Nonlocal Interaction on Spatio-temporal Pattern Formation JO - Mathematical modelling of natural phenomena PY - 2016 SP - 103 EP - 118 VL - 11 IS - 5 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611507/ DO - 10.1051/mmnp/201611507 LA - en ID - MMNP_2016_11_5_a6 ER -
%0 Journal Article %A M. Banerjee %A L. Zhang %T Stabilizing Role of Nonlocal Interaction on Spatio-temporal Pattern Formation %J Mathematical modelling of natural phenomena %D 2016 %P 103-118 %V 11 %N 5 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611507/ %R 10.1051/mmnp/201611507 %G en %F MMNP_2016_11_5_a6
M. Banerjee; L. Zhang. Stabilizing Role of Nonlocal Interaction on Spatio-temporal Pattern Formation. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 5, pp. 103-118. doi : 10.1051/mmnp/201611507. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611507/
[1] Spatial structures and generalized travelling waves for an integro-differential equation DCDS B 2010 537 557
, , ,[2] Existence and non-existence of spatial patterns in a ratio-dependent predator-prey model Ecol. Comp. 2015 199 214
,[3] Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model Math. Biosci. 2012 64 76
,[4] Self-organized spatial patterns and chaos in a ratio-dependent predator-prey system Theor. Ecol. 2011 37 53
,[5] M. Banerjee, M. Sen, V. Volpert. Pattern formation in a prey-predator model with nonlocal interaction terms. In “Applied Analysis with Application in Biological and Physical Sciences”, Springer, In press, 2016.
[6] Prey-predator model with a nonlocal consumption of prey Chaos 2016 083120
,[7] M. Banerjee, V. Volpert. Spatio-temporal pattern formation in Rosenzweig-Macarthur model: effect of nonlocal interactions. (under review) (2016).
[8] Mathematics of Darwin’s diagram Math. Model. Nat. Phenom. 2014 5 25
, ,[9] Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model SIAM J. Appl. Math. 1990 1663 1688
[10] Pattern and waves for a model in population dynamics with nonlocal consumption of resources Math. Model. Nat. Phenom. 2006 63 80
, ,[11] Y. A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer-Verlag, New York 2004.
[12] Spatio-temporal pattern formation in nonlinear nonequilibrium plankton dynamics Proc. Royal Soc. London B 1993 103 109
[13] Spatiotemporal complexity of plankton and fish dynamics SIAM Rev 2002 311 370
, , , ,[14] Instabilities and spatiotemporal patterns behind predator invasions with nonlocal prey competition Theor. Pop. Biol. 2011 289 297
,[15] Selection and stability of wave trains behind predator invasions in a model with non-local prey competition IMA J. Appl. Math. 2015 1155 1177
,[16] J. D. Murray. Mathematical Biology II. Springer-Verlag, Heidelberg (2002).
[17] R. Nathan, E. Klein, J. J. Robledo-Arnuncio. Dispersal kernels: Review, in Dispersal Ecology and Evolution. J. Clobert, M. Baguette, T. G. Benton, and J. M. Bullock, (Eds.), Oxford University Press, Oxford, UK, (2012) 187–210.
[18] A. Okubo, S. Levin. Diffusion and Ecological Problems: Modern Perspectives. Springer, Berlin 2001.
[19] Perko, L. Differential Equations and Dynamical Systems. Springer, New York, 2001.
[20] Pattern formation in a model of competing populations with nonlocal interactions Phys. D 2013 12 23
, ,[21] Periodic traveling waves in integro-differential equations for nonlocal dispersal SIAM J. Appl. Dyna. Sys. 2014 1517 1541
[22] Stability and pattern formation for competing populations with asymmetric nonlocal coupling Math. Biosci. 2013 14 26
, , ,[23] Elliptic Partial Differential Equations Reaction-diffusion Equations Birkhauser 2014
Cité par Sources :