Stabilizing Role of Nonlocal Interaction on Spatio-temporal Pattern Formation
Mathematical modelling of natural phenomena, Tome 11 (2016) no. 5, pp. 103-118.

Voir la notice de l'article provenant de la source EDP Sciences

Here we study a spatio-temporal prey-predator model with ratio-dependent functional response and nonlocal interaction term in the prey growth. For a clear understanding of the effect of nonlocal interaction on the resulting stationary and non-stationary patterns, we consider the nonlocal interaction term in prey growth only to describe the nonlocal intra-specific competition due to limited resources for the prey. First we obtain the patterns exhibited by the basic model in the absence of nonlocal interaction and then explore the effect of nonlocal interaction on the resulting patterns. We demonstrate the stabilizing role of nonlocal interaction as it induces stationary pattern from periodic and chaotic regimes with an increase in the range of nonlocal interaction. The existence of multiple branches of stationary solutions, bifurcating from homogeneous steady-state as well as non-stationary patterns, is illustrated with the help of numerical continuation technique.
DOI : 10.1051/mmnp/201611507

M. Banerjee 1 ; L. Zhang 2

1 Department of Mathematics & Statistics, IIT Kanpur, Kanpur, INDIA
2 Department of Mathematics and Mathematical Statistics, Umea University, Umea, Sweden
@article{MMNP_2016_11_5_a6,
     author = {M. Banerjee and L. Zhang},
     title = {Stabilizing {Role} of {Nonlocal} {Interaction} on {Spatio-temporal} {Pattern} {Formation}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {103--118},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2016},
     doi = {10.1051/mmnp/201611507},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611507/}
}
TY  - JOUR
AU  - M. Banerjee
AU  - L. Zhang
TI  - Stabilizing Role of Nonlocal Interaction on Spatio-temporal Pattern Formation
JO  - Mathematical modelling of natural phenomena
PY  - 2016
SP  - 103
EP  - 118
VL  - 11
IS  - 5
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611507/
DO  - 10.1051/mmnp/201611507
LA  - en
ID  - MMNP_2016_11_5_a6
ER  - 
%0 Journal Article
%A M. Banerjee
%A L. Zhang
%T Stabilizing Role of Nonlocal Interaction on Spatio-temporal Pattern Formation
%J Mathematical modelling of natural phenomena
%D 2016
%P 103-118
%V 11
%N 5
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611507/
%R 10.1051/mmnp/201611507
%G en
%F MMNP_2016_11_5_a6
M. Banerjee; L. Zhang. Stabilizing Role of Nonlocal Interaction on Spatio-temporal Pattern Formation. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 5, pp. 103-118. doi : 10.1051/mmnp/201611507. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611507/

[1] N. Apreutesei, N. Bessonov, V. Volpert, V. Vougalter Spatial structures and generalized travelling waves for an integro-differential equation DCDS B 2010 537 557

[2] M. Banerjee, S. Abbas Existence and non-existence of spatial patterns in a ratio-dependent predator-prey model Ecol. Comp. 2015 199 214

[3] M. Banerjee, S. Banerjee Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model Math. Biosci. 2012 64 76

[4] M. Banerjee, S. Petrovskii Self-organized spatial patterns and chaos in a ratio-dependent predator-prey system Theor. Ecol. 2011 37 53

[5] M. Banerjee, M. Sen, V. Volpert. Pattern formation in a prey-predator model with nonlocal interaction terms. In “Applied Analysis with Application in Biological and Physical Sciences”, Springer, In press, 2016.

[6] M. Banerjee, V. Volpert Prey-predator model with a nonlocal consumption of prey Chaos 2016 083120

[7] M. Banerjee, V. Volpert. Spatio-temporal pattern formation in Rosenzweig-Macarthur model: effect of nonlocal interactions. (under review) (2016).

[8] N. Bessonov, N. Reinberg, V. Volpert Mathematics of Darwin’s diagram Math. Model. Nat. Phenom. 2014 5 25

[9] N. F. Britton Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model SIAM J. Appl. Math. 1990 1663 1688

[10] S. Genieys, V. Volpert, P. Auger Pattern and waves for a model in population dynamics with nonlocal consumption of resources Math. Model. Nat. Phenom. 2006 63 80

[11] Y. A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer-Verlag, New York 2004.

[12] H. Malchow Spatio-temporal pattern formation in nonlinear nonequilibrium plankton dynamics Proc. Royal Soc. London B 1993 103 109

[13] A. Medvinsky, S. Petrovskii, I. Tikhonova, H. Malchow, B. L. Li Spatiotemporal complexity of plankton and fish dynamics SIAM Rev 2002 311 370

[14] S. M. Merchant, W. Nagata Instabilities and spatiotemporal patterns behind predator invasions with nonlocal prey competition Theor. Pop. Biol. 2011 289 297

[15] S. M. Merchant, W. Nagata Selection and stability of wave trains behind predator invasions in a model with non-local prey competition IMA J. Appl. Math. 2015 1155 1177

[16] J. D. Murray. Mathematical Biology II. Springer-Verlag, Heidelberg (2002).

[17] R. Nathan, E. Klein, J. J. Robledo-Arnuncio. Dispersal kernels: Review, in Dispersal Ecology and Evolution. J. Clobert, M. Baguette, T. G. Benton, and J. M. Bullock, (Eds.), Oxford University Press, Oxford, UK, (2012) 187–210.

[18] A. Okubo, S. Levin. Diffusion and Ecological Problems: Modern Perspectives. Springer, Berlin 2001.

[19] Perko, L. Differential Equations and Dynamical Systems. Springer, New York, 2001.

[20] B. L. Segal, V. A. Volpert, A. Bayliss Pattern formation in a model of competing populations with nonlocal interactions Phys. D 2013 12 23

[21] J. A. Sherratt Periodic traveling waves in integro-differential equations for nonlocal dispersal SIAM J. Appl. Dyna. Sys. 2014 1517 1541

[22] M. C. Tanzy, V. A. Volpert, A. Bayliss, M. E. Nehrkorn Stability and pattern formation for competing populations with asymmetric nonlocal coupling Math. Biosci. 2013 14 26

[23] V. Volpert Elliptic Partial Differential Equations Reaction-diffusion Equations Birkhauser 2014

Cité par Sources :