Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2016_11_5_a5, author = {J.A. Sherratt}, title = {Using {Numerical} {Bifurcation} {Analysis} to {Study} {Pattern} {Formation} in {Mussel} {Beds}}, journal = {Mathematical modelling of natural phenomena}, pages = {86--102}, publisher = {mathdoc}, volume = {11}, number = {5}, year = {2016}, doi = {10.1051/mmnp/201611506}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611506/} }
TY - JOUR AU - J.A. Sherratt TI - Using Numerical Bifurcation Analysis to Study Pattern Formation in Mussel Beds JO - Mathematical modelling of natural phenomena PY - 2016 SP - 86 EP - 102 VL - 11 IS - 5 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611506/ DO - 10.1051/mmnp/201611506 LA - en ID - MMNP_2016_11_5_a5 ER -
%0 Journal Article %A J.A. Sherratt %T Using Numerical Bifurcation Analysis to Study Pattern Formation in Mussel Beds %J Mathematical modelling of natural phenomena %D 2016 %P 86-102 %V 11 %N 5 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611506/ %R 10.1051/mmnp/201611506 %G en %F MMNP_2016_11_5_a5
J.A. Sherratt. Using Numerical Bifurcation Analysis to Study Pattern Formation in Mussel Beds. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 5, pp. 86-102. doi : 10.1051/mmnp/201611506. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611506/
[1] Landscape metrics indicate differences in patterns and dominant controls of ribbon forests in the Rocky Mountains, USA Appl. Veg. Sci 2009 237 249
, ,[2] Non-linear properties of thermal convection Rep. Prog. Phys. 1978 1929 1967
[3] Nonlinear stability analyses of Turing patterns for a mussel-algae model J. Math. Biol. 2015 1249 1294
, , ,[4] Oscillatory instabilities and dynamics of multispike patterns for the one-dimensional Gray-Scott model Eur. J. Appl. Math. 2009 187 214
,[5] Predator-induced clumping behaviour in mussels (Mytilus edulis Linnaeus) J. Exp. Mar. Biol. Ecol. 1999 201 211
,[6] Absolute stability and dynamical stabilisation in predator-prey systems J. Math. Biol. 2014 1403 1421
,[7] Environmental modulation of self-organized periodic vegetation patterns in Sudan Ecography 2011 990 1001
, , , ,[8] AUTO, a program for the automatic bifurcation analysis of autonomous systems Cong. Numer. 1981 265 384
[9] Numerical analysis and control of bifurction problems: (I) bifurcation in finite dimensions Int. J. Bifurcation Chaos 1991 493 520
, ,[10] E.J. Doedel, W. Govaerts, Y.A. Kuznetsov, A. Dhooge. Numerical continuation of branch points of equilibria and periodic orbits. In: E.J. Doedel, G. Domokos, I.G. Kevrekidis (eds.) Modelling and Computations in Dynamical Systems. World Scientific, Singapore (2006), pp. 145–164.
[11] Pattern formation in the one dimensional Gray-Scott model Nonlinearity 1997 523 563
, ,[12] Erosion of an intertidal mussel bed by ice- and wave-action Cont. Shelf Res. 2015 60 69
, ,[13] Regular surface patterning of peatlands: confronting theory with field data Ecosystems 2008 520 536
, , , , ,[14] Linking habitat modification to catastrophic shifts and vegetation patterns in bogs Plant Ecol 2009 53 68
, , ,[15] Biodeposition in a juvenile mussel bed of the east Frisian Wadden Sea (Southern North Sea) Aqua. Eco. 1994 289 297
,[16] Density dependence, spatial scale and patterning in sessile biota Oecologia 2005 371 381
, , ,[17] Coherent structures in a population model for mussel-algae interaction SIAM J. Appl. Dyn. Syst. 2015 893 913
,[18] Autocatalytic reactions in the isothermal, continuous stirred tank reactor: oscillations and instabilities in the system A+2B→ 3B Chem. Eng. Sci. 1984 1087 1097
,[19] Regular and irregular patterns in semiarid vegetation Science 1999 1826 1828
[20] Localized vegetation patches: a self-organized response to resource scarcity Phys. Rev. 2002 010901
, ,[21] Disturbance, patch formation, and community structure Proc. Natl. Acad. Sci. USA 1974 2744 2747
,[22] Alternative mechanisms alter the emergent properties of self-organization in mussel beds Proc. R. Soc. Lond. 2012 20120157
, , , ,[23] Phase separation explains a new class of self-organized spatial patterns in ecological systems Proc. Natl. Acad. Sci. USA 2013 11905 11910
, , , , , ,[24] Motional instabilities in predator-prey systems J. Theor. Biol. 2000 639 647
[25] Instabilities and spatiotemporal patterns behind predator invasions with nonlocal prey competition Theor. Pop. Biol. 2011 289 297
,[26] Predation and physical environment structure the density and population size structure of zebra mussels J. N. Am. Benthol. Soc. 2010 444 453
, ,[27] Intertidal landscapes: disturbance and the dynamics of pattern Ecol. Monogr. 1981 145 178
,[28] Phase differences in reaction-diffusion-advection systems and applications to morphogenesis IMA J. Appl. Math. 1995 19 33
, ,[29] Instabilities of wave trains and Turing patterns in large domains Int. J. Bifur. Chaos 2007 2679 2691
,[30] Computing absolute and essential spectra using continuation Physica 2007 166 183
, ,[31] Chemical instability induced by a differential flow Phys. Rev. Lett. 1992 1193 1196
,[32] B. Sandstede, Stability of travelling waves. In: B. Fiedler (ed.) Handbook of Dynamical Systems II. North-Holland, Amsterdam (2002), pp. 983–1055.
[33] Absolute and convective instabilities of waves on unbounded and large bounded domains Physica 2000 233 277
,[34] Numerical continuation methods for studying periodic travelling wave (wavetrain) solutions of partial differential equations Appl. Math. Computation 2012 4684 4694
[35] History-dependent patterns of whole ecosystems Ecol. Complex. 2013 8 20
[36] Numerical continuation of boundaries in parameter space between stable and unstable periodic travelling wave (wavetrain) solutions of partial differential equations Adv. Comput. Math. 2013 175 192
[37] Using wavelength and slope to infer the historical origin of semi-arid vegetation bands Proc. Natl. Acad. Sci. USA 2015 4202 4207
[38] Nonlinear dynamics and pattern bifurcations in a model for vegetation stripes in semi-arid environments Theor. Pop. Biol. 2007 1 11
,[39] How does tidal flow affect pattern formation in mussel beds? J. Theor. Biol. 2016 83 92
,[40] Locating the transition from periodic oscillations to spatiotemporal chaos in the wake of invasion Proc. Natl. Acad. Sci. USA 2009 10890 10895
, ,[41] A mathematical biologist’s guide to absolute and convective instability Bull. Math. Biol. 2014 1 26
, ,[42] Striped pattern selection by advective reaction-diffusion systems: Resilience of banded vegetation on slopes Chaos 2015 036411
, , , , ,[43] Beyond Turing: the response of patterned ecosystems to environmental change Ecol. Complex. 2014 81 96
, , , , ,[44] Propagating fronts in the complex Ginzburg-Landau equation generate fixed-width bands of plane waves Phys. Rev. 2009 046209
,[45] Absolute stability of wavetrains can explain spatiotemporal dynamics in reaction-diffusion systems of lambda-omega type SIAM J. Appl. Dyn. Systems 2009 1136 1159
, ,[46] Integrating theoretical climate and fire effects on savanna and forest systems Am. Nat. 2012 211 224
,[47] Numerical aspects of searching convective/absolute instability transition J. Comp. Phys. 2006 188 217
[48] Distribution of cryptic mussel species (Mytilus edulis and M. trossulus) along wave exposure gradients on northwest Atlantic rocky shores Mar. Biol. Res. 2014 51 60
,[49] Scale-dependent feedback and regular spatial patterns in young mussel beds Am. Nat. 2005 E66 77
, , ,[50] Rise and fall of periodic patterns for a generalized Klausmeier-Gray-Scott model J. Nonlinear Sci. 2013 39 95
, , ,[51] Modeling the influence of a young mussel bed on fine sediment dynamics on an intertidal flat in the Wadden Sea Ecol. Eng. 2010 145 153
, , , ,[52] Perturbation induced changes in substrate use by the blue mussel, Mytilus edulis, in sedimentary systems J. Sea Res. 2014 233 240
, , , , ,[53] Nonlinear dynamic and pattern bifurcations in a model for spatial patterns in young mussel beds J. R. Soc. Interface 2009 705 718
, , , ,[54] Changes in diatom patch-size distribution and degradation in a spatially self-organized intertidal mudflat ecosystem Ecology 2012 608 618
, , , , , ,[55] Local interactions predict large-scale pattern in empirically derived cellular automata Nature 2001 841 844
[56] Gradual regime shifts in fairy circles Proc. Natl. Acad. Sci. USA 2015 12327 12331
, ,Cité par Sources :