Bifurcations and Chaotic Dynamics in a Tumour-Immune-Virus System
Mathematical modelling of natural phenomena, Tome 11 (2016) no. 5, pp. 65-85.

Voir la notice de l'article provenant de la source EDP Sciences

Despite mounting evidence that oncolytic viruses can be effective in treating cancer, understanding the details of the interactions between tumour cells, oncolytic viruses and immune cells that could lead to tumour control or tumour escape is still an open problem. Mathematical modelling of cancer oncolytic therapies has been used to investigate the biological mechanisms behind the observed temporal patterns of tumour growth. However, many models exhibit very complex dynamics, which renders them difficult to investigate. In this case, bifurcation diagrams could enable the visualisation of model dynamics by identifying (in the parameter space) the particular transition points between different behaviours. Here, we describe and investigate two simple mathematical models for oncolytic virus cancer therapy, with constant and immunity-dependent carrying capacity. While both models can exhibit complex dynamics, namely fixed points, periodic orbits and chaotic behaviours, only the model with immunity-dependent carrying capacity can exhibit them for biologically realistic situations, i.e., before the tumour grows too large and the experiment is terminated. Moreover, with the help of the bifurcation diagrams we uncover two unexpected behaviours in virus-tumour dynamics: (i) for short virus half-life, the tumour size seems to be too small to be detected, while for long virus half-life the tumour grows to larger sizes that can be detected; (ii) some model parameters have opposite effects on the transient and asymptotic dynamics of the tumour.
DOI : 10.1051/mmnp/201611505

R. Eftimie 1 ; C.K. Macnamara 2 ; Jonathan Dushoff 3, 4 ; J.L. Bramson 4, 5 ; D.J.D. Earn 6

1 Division of Mathematics, University of Dundee, Dundee, United Kingdom, DD1 4HN
2 School of Mathematics and Statistics, University of St. Andrews St. Andrews, United Kingdom, KY16 9AJ
3 Department of Biology, McMaster University, Hamilton, ON, L8S 4L8, Canada
4 Michael G. DeGroote Institute for Infectious Disease Research, McMaster University Hamilton, ON, Canada, L8N 4L8
5 McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada, L8S 4K1
6 Department of Mathematics and Statistics, McMaster University, Hamilton, ON, Canada, L8S 4K1
@article{MMNP_2016_11_5_a4,
     author = {R. Eftimie and C.K. Macnamara and Jonathan Dushoff and J.L. Bramson and D.J.D. Earn},
     title = {Bifurcations and {Chaotic} {Dynamics} in a {Tumour-Immune-Virus} {System}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {65--85},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2016},
     doi = {10.1051/mmnp/201611505},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611505/}
}
TY  - JOUR
AU  - R. Eftimie
AU  - C.K. Macnamara
AU  - Jonathan Dushoff
AU  - J.L. Bramson
AU  - D.J.D. Earn
TI  - Bifurcations and Chaotic Dynamics in a Tumour-Immune-Virus System
JO  - Mathematical modelling of natural phenomena
PY  - 2016
SP  - 65
EP  - 85
VL  - 11
IS  - 5
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611505/
DO  - 10.1051/mmnp/201611505
LA  - en
ID  - MMNP_2016_11_5_a4
ER  - 
%0 Journal Article
%A R. Eftimie
%A C.K. Macnamara
%A Jonathan Dushoff
%A J.L. Bramson
%A D.J.D. Earn
%T Bifurcations and Chaotic Dynamics in a Tumour-Immune-Virus System
%J Mathematical modelling of natural phenomena
%D 2016
%P 65-85
%V 11
%N 5
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611505/
%R 10.1051/mmnp/201611505
%G en
%F MMNP_2016_11_5_a4
R. Eftimie; C.K. Macnamara; Jonathan Dushoff; J.L. Bramson; D.J.D. Earn. Bifurcations and Chaotic Dynamics in a Tumour-Immune-Virus System. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 5, pp. 65-85. doi : 10.1051/mmnp/201611505. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611505/

[1] R. Antia, S. Pilyugin, R. Ahmed Models of immune memory: on the role of cross-reactive stimulation, competition, and homeostasis in maintaining immune memory Proc. Natl. Acad. Sci. USA 1998 14926 14931

[2] R.P. Araujo, D.L.S. Mcelwain A history of the study of solid tumor growth: the contribution of mathematical modeling Bull. Math. Biol. 2004 1039 1091

[3] Z. Bajzer, T. Carr, K. Josić, S.J. Russell, D. Dingli Modeling of cancer virotherapy with recombinant measles viruses J. Theor. Biol. 2008 109 122

[4] P.C.L. Beverley Primer: making sense of T-cell memory Nature Clinical Practice 2008 43 49

[5] U. Blohm, D. Potthoff, A.J. Van Der Kogel, H. Pircher Solid tumors “melt” from the inside after successful CD8 T cell attack Eur. J. Immunol 2006 468 477

[6] S. Boccaletti, C. Grebogi, Y.-C. Lai, H. Mancini, D. Maza The control of chaos: theory and applications Physics Reports 2000 103 197

[7] F. Le Boeuf, C. Batenchuk, M. Vähä-Koskela, S. Breton, D. Roy, C. Lemay, J. Cox, H. Abdelbary, T. Falls, G. Waghray, H. Atkins, D. Stojdl, J.S. Diallo, M. Kaern M, J.C. Bell Model-based rational design of an oncolytic virus with improved therapeutic potential Nat. Commun. 2013 1974

[8] B.M. Boman, M.S. Wicha Cancer stem cells: a step toward the cure J. Clin. Oncol. 2008 2795 2799

[9] C.J. Breitbach, J.M. Paterson, C.G. Lemay, T.J. Falls, A. Mcguire, K.A. Parato, D.F. Stojdl, M. Daneshmand, K. Speth, D. Kirn, J.A. Mccart, H. Atkins, J.C. Bell Targeted inammation during oncolytic virus therapy severely compromises tumour blood ow Mol. Ther. 2007 1686 1693

[10] B.W. Bridle, K.B. Stephenson, J.E. Boudreau, S. Koshy, N. Kazdhan, E. Pullenayegum, J. Brunelliére, J.L. Bramson, B.D. Lichty, Y. Wan Potentiating cancer immunotherapy using an oncolytic virus Mol. Ther. 2010 1430 1439

[11] K.T. Brunner, D. Hurez, R.T. Mccluskey, B. Benacerraf Blood clearance rates of P32-labeled Vesicular Stomatitis and Newcastle disease viruses by the reticuloendothelial system in mice J. Immunol. 1960 99 105

[12] K.W. Brunson, G.L. Nicholson. Experimental brain metastasis. Brain metastasis (L. Weiss, H.A. Gilbert, J.B. Posner, eds.) Springer 1980, 50–65.

[13] S. Bunimovich-Mendrazitsky, E. Shochat, L. Stone Mathematical model of BCG immunotherapy in superficial bladder cancer Bull. Math. Biol. 2007 1847 1870

[14] H.M. Byrne, S.M. Cox, C.E. Kelly Macrophage-tumor interactions: In vivo dynamics Discrete and Continuous dynamical systems - Series B 2004 81 98

[15] R.S. Coffin Oncolytic immunotherapy: an emerging new modality for the treatment of cancer Annals of Oncology 2016 1 4

[16] B.J. Coventry, M.L. Ashdown, M.A. Quinn, S.N. Markovic, S.L. Yatomi-Clarke, A.P. Robinson CRP identifies homeostatic immune oscillations in cancer patients: a potential treatment targeting tool? J. Translat. Med. 2009 102

[17] M.A. Croyle, S.M. Callahan, A. Auricchio, G. Schumer, K.D. Linse, Hj.M. Wilson, L.J. Brunner, G.P. Kobinger PEGylation of a Vesicular Stomatitis Virus G pseudotyped lentivirus vector prevents inactivation in serum J. Virol. 2004 912 921

[18] A. Dalgleish The relevance of non-linear mathematics (chaos theory) to the treatment of cancer, the role of the immune response and the potential for vaccines QJM 1999 347 359

[19] L. De Pillis, A. Gallegos, A. Radunskaya A model of dendritic cell therapy for melanoma Frontiers in Oncology 2013 56

[20] L.G. De Pillis, A.E. Radunskaya, C.L. Wiseman A validated mathematical model of cell-mediated immune response to tumor growth Cancer. Res. 2005 7950 7958

[21] N.J. Depolo, J.J. Holland The intracellular half-lives of nonreplicanting nucleocapsids of di particles of wild type and mutant strains of vesicular stomatitis virus Virology 1986 371 378

[22] D. Dingli, C. Offord, R. Myers, K.-W. Peng, T.W. Carr, K. Josic, S.J. Russell, Z. Bajzer Dynamics of multiple myeloma tumor therapy with a recombinant measles virus Cancer Gene Ther. 2009 873 882

[23] A. Durudas, H.-L. Chen, M.A. Gasper, V. Sundaravaradan, J.M. Milush, G. Silvestri, W. Johnson, L.D. Giavedoni, D.L. Sodora Differential innate immune responses to low or high dose of oral SIV challenge in Rhesus macaques Curr. HIV Res. 2011 276 288

[24] A.K. Eerola, Y. Soini, P. Pääkkö A high number of tumor-infiltrating lymphocytes are associated with a small tumour size, low tumour stage and a favourable prognosis in operated small cell lung carcinoma Clin. Cancer Res. 2000 1875 1881

[25] R. Eftimie, J.L. Bramson, D.J.D. Earn Interactions between the immune system and cancer: a brief review of non-spatial mathematical models Bull. Math. Biol. 2010 2 32

[26] R. Eftimie, J.L. Bramson, D.J.D. Earn Modeling anti-tumor Th1 and Th2 immunity in the rejection of melanoma J. Theor. Biol. 2010 467 480

[27] R. Eftimie, J. Dushoff, B.W. Bridle, J.L. Bramson, D.J.D. Earn Multi-stability and multi-instability phenomena in a mathematical model of tumor-immune-virus interactions Bull. Math. Biol. 2011 2932 2961

[28] S. Friberg, S. Mattson On the growth rates of human malignant tumours: implications for medical decision making J. Surgical Oncology 1997 284 297

[29] T.F. Gajewski, H. Schreiber, Y.-X. Fu Innate and adaptive immune cells in the timor microenvironment Nat. Immunol. 2013 1014 1022

[30] P. Hahnfeldt, D. Panigrahy, J. Folkman, L. Hlatky Tumor development under angiogenic signalling: a dynamical theory of tumor growth, treatment response, and post vascular dormancy Cancer Res. 1999 4770 4775

[31] B.-Y. Hwang, D.V. Schaffer Engineering a serum-resistant and thermostable vesicular stomatitis virus G glycoprotein for pseudotyping retroviral and lentiviral vectors Gene Therapy 2013 807 815

[32] I.P. Janecka Cancer control through principles of systems science, complexity, and chaos theory: a model Int. J. Med. Sci. 2007 164 173

[33] P.S. Kim, J.J. Crivelli, I.-K. Choi, C.-O. Yun, J.R. Wares Quantitative impact of immunomodulation versus oncolysis with cytokine-expressing virus therapeutics Mathematical Biosciences and Engineering 2015 841 858

[34] D. Kirschner, J.C. Panetta Modeling immunotherapy of the tumor-immune interaction J. Math. Biol. 1998 235 252

[35] K.M. Kokolus, M.L. Capitano, C.-T. Lee, J.W.-L. Eng, J.D. Waight, B.L. Hylander, S. Sexton, C.-C. Hong, C.J. Gordon, S.I. Abrams, E.A. Repasky Baseline tumour growth and immune control in laboratory mice are significantly inuenced by subthermoneutral housing temperature Proc. Natl. Acad. Sci. USA 2013 20176 20181

[36] T.M. Kündig, M.F. Bachmann, S. Oehen, U.W. Hoffmann, J.J.L. Simard, C.P. Kalberer, H. Pircher, P.S. Ohashi, H. Hengartner, R.F. Zinkernagel On the role of antigen maintaining cytotoxic T-cell memory Proc. Natl. Acad. Sci. USA 1996 9716 9723

[37] U. Ledzewicz, H. Schättler Antiangiogenic therapy in cancer treatment as an optimal control problem SIAM. J. Control Optim. 2007 1052 1079

[38] C. Letellier, F. Denis, L.A. Aguirre What can be learned from a chaotic cancer model? J. Theor. Biol. 2013 7 16

[39] Q.-X. Li, Guohong Liu, F. Wong-Staal Oncolytic virotherapy as a personalized cancer vaccine Int. J. Cancer 2008 493 499

[40] A.G. Lópea, J.M. Seoane, M.A.F. Sanjuán A validated mathematical model of tumour growth including tumour-host interaction, cell-mediated immune response and chemotherapy Bull. Math. Biol. 2014 2884 2906

[41] E.N. Lorenz Deterministic nonperiodic ow J. Atmospheric Sciences 1963 130 141

[42] M.C. Mackey, L. Glass Oscillations and chaos in physiological control systems Science 1977 287 289

[43] T. Mattfeldt Nonlinear deterministic analysis of tissue texture: a stereological study on mastopathic and mammary cancer tissue using chaos theory J. Microscopy 1997 47 66

[44] J.D. Murray. Mathematical Biology I. An Introduction. Springer 2002.

[45] A. Naldini, F. Carraro Role of inammatory mediators in angiogenesis Current Drug Targets - Inammation & Allergy 2005 3 8

[46] N.I.H., O.A.C.U.. Guidelines for endpoints in animal study proposals. 1996 http://oacu.od.nih.gov/ARAC/documents/ASP\_Endpoints.pdf.

[47] M.R. Owen, J.A. Sherratt Modeling the macrophage invasion of tumors: effects on growth and composition Mathematical Medicine and Biology 1998 165 185

[48] K.A. Parato, D. Senger, P.A.J. Forsyth, J.C. Bell Recent progress in the battle between oncolytic viruses and tumors Nature Reviews Cancer 2005 965 976

[49] M.R. Patel, R.A. Kratzke Oncolytic virus therapy for cancer: the first wave of translational clinical trials Transl. Res. 2013 355 364

[50] T.D. Pham, K. Ichikawa Spatial chaos and complexity in the intracellular space of cancer and normal cells Theoretical Biology and Medical Modeling 2013 62

[51] D.M. Rommelfanger, C.P. Offord, J. Dev, Z. Bajzer, R.G. Ville, D. Dingli Dynamics of melanoma tumor therapy with vesicular stomatitis virus: explaining the variability in outcomes using mathematical modeling Gene Ther. 2012 543 549

[52] S.A. Rosenberg, J.C. Yang, N.P. Restifo Cancer immunotherapy: moving beyond current vaccines Nature Medicine 2004 909 915

[53] S.J. Russell, K.-W. Peng, J.C. Bell Oncolytic virotherapy Nat. Biotechnol. 2012 658 670

[54] D. Sargent, A. Sobrero, A. Grothey, M.J. O’Connell, M. Buyse, T. Andre, Y. Zheng, E. Green, R. Labianca, C. O’Callaghan, J.F. Seitz, G. Francini, D. Haller, G. Yothers, R. Goldberg, A. De Gramont Evidence for cure by adjuvant therapy in colon cancer: observations based on individual patient data from 20,898 patients on 18 randomised trials J. Clin. Oncol. 2009 872 877

[55] E.D. Schwab, K.J. Pienta Cancer as a complex adaptive system Medical Hypotheses 1996 235 241

[56] J.A. Spratt, D. Von Fournier, J.S. Spratt, E.E. Weber Decelerating growth and human breast cancer Cancer 1993 2013 2019

[57] M.Z. Tesfay, A.C. Kirk, E.M. Hadac, G.E. Griesmann, M.J. Federspiel, G.N. Barber, S.M. Henry, K.W. Peng, S.J. Russell PEGylation of vesicular stomatitis virus extends virus persistence in blood circulation of passively immunized mice J. Virol 2013 3752 3759

[58] L.M. Wein, J.T. Wu, D.H. Kirn Validation and analysis of a mathematical model of a replication-competent oncolytic virus for cancer treatment: implications for virus design and delivery Cancer Res. 2003 1317 1324

[59] K.P. Wilkie, P. Hahnfeldt. Modelling the dichotomy of the immune response to cancer: cytotoxic effects and tumor-promoting inammation. ArXiv, 1305.3634 (2014), 1–24.

[60] M.A. Williams, M.J. Bevan Effector and memory CTL differentiation Annu. Rev. Immunol. 2007 171 192

[61] D. Wodarz Viruses as antitumor weapons: defining conditions for tumor remission Cancer Res. 2001 3501 3507

[62] D. Wodarz Computational modelling approaches to studying the dynamics of oncolytic viruses Mathematical Biosciences and Engineering 2013 939 957

[63] D. Wodarz, A. Hofacre, J.W. Lau, Z. Sun, H. Fan, N.L. Komarova Complex spatial dynamics of oncolytic viruses in vitro: mathematical and experimental approaches PLoS Comput. Biol. 2011 e1002547

[64] D. Wodarz, N. Komarova Towards predictive computational models of oncolytic virus therapy: basis for experimental validation and model selection PLoS One 2009 e4271

[65] A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano Determining Lyapunov exponents from a time series Physica D 1985 285 317

[66] J.T. Wu, H.M. Byrne, D.H. Kirn, L.M. Wein Modelling and analysis of a virus that replicates selectively in tumor cells Bull. Math. Biol. 2001 731 768

[67] A. Zippelius, P. Batard, V. Rubio-Godoy, G. Bioley, D. Liénard, F. Lejeune, D. Rimoldi, P. Guillaume, N. Meidenbauer, A. Mackensen, N. Rufer, N. Lubenow, D. Speiser, J.-C. Cerottini, P. Romero, M.J. Pittet Effector function of human tumour-specific CD8 T cells in melanoma lesions: a state of local functional tolerance Cancer Res. 2004 2865 2873

Cité par Sources :