The Effect of Cell Death on the Stability of a Growing Biofilm
Mathematical modelling of natural phenomena, Tome 11 (2016) no. 5, pp. 33-48.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, we investigate the role of cell death in promoting pattern formation within bacterial biofilms. To do this we utilise an extension of the model proposed by Dockery and Klapper [13], and consider the effects of two distinct death rates. Equations describing the evolution of a moving biofilm interface are derived, and properties of steady state solutions are examined. In particular, a comparison of the planar behaviour of the biofilm interface in the different cases of cell death is investigated. Linear stability analysis is carried out at steady state solutions of the interface, and it is shown that, under certain conditions, instabilities may arise. Analysis determines that, while the emergence of patterns is a possibility in `deep’ biofilms, it is unlikely that pattern formation will arise in `shallow’ biofilms.
DOI : 10.1051/mmnp/201611503

H. A. Wallace 1 ; L. Li 1 ; F. A. Davidson 1

1 University of Dundee
@article{MMNP_2016_11_5_a2,
     author = {H. A. Wallace and L. Li and F. A. Davidson},
     title = {The {Effect} of {Cell} {Death} on the {Stability} of a {Growing} {Biofilm}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {33--48},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2016},
     doi = {10.1051/mmnp/201611503},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611503/}
}
TY  - JOUR
AU  - H. A. Wallace
AU  - L. Li
AU  - F. A. Davidson
TI  - The Effect of Cell Death on the Stability of a Growing Biofilm
JO  - Mathematical modelling of natural phenomena
PY  - 2016
SP  - 33
EP  - 48
VL  - 11
IS  - 5
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611503/
DO  - 10.1051/mmnp/201611503
LA  - en
ID  - MMNP_2016_11_5_a2
ER  - 
%0 Journal Article
%A H. A. Wallace
%A L. Li
%A F. A. Davidson
%T The Effect of Cell Death on the Stability of a Growing Biofilm
%J Mathematical modelling of natural phenomena
%D 2016
%P 33-48
%V 11
%N 5
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611503/
%R 10.1051/mmnp/201611503
%G en
%F MMNP_2016_11_5_a2
H. A. Wallace; L. Li; F. A. Davidson. The Effect of Cell Death on the Stability of a Growing Biofilm. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 5, pp. 33-48. doi : 10.1051/mmnp/201611503. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611503/

[1] M. Asally, M. Kittisopikul, P. Rué, Y. Du, Z. Hu, T. Çağatay, A. B. Robinson, H. Lu, J. Garcia-Ojalvo, G. M. Süel Localized cell death focuses mechanical forces during 3D patterning in a biofilm Proceedings of the National Academy of Sciences 2012 18891 18896

[2] B. P. Ayati, I. Klapper A multiscale model of biofilm as a senescence-structured fluid Multiscale Modeling & Simulation 2007 347 365

[3] M. M. Baum, A. Kainovic’, T. O’Keeffe, R. Pandita, K. Mcdonald, S. Wu, P. Webster Characterization of structures in biofilms formed by a Pseudomonas fluorescens isolated from soil BMC Microbiology 2009 103

[4] S. S. Branda, Å. Vik, L. Friedman, R. Kolter Biofilms: the matrix revisited Trends in Microbiology 2005 20 26

[5] L. S. Cairns, L. Hobley, N. R. Stanley-Wall Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms Molecular Microbiology 2014 587 598

[6] J. W. Costerton, Z. Lewandowski, D. E. Caldwell, D. R. Korber, H. M. Lappin-Scott Microbial biofilms Annual Review of Microbiology 1995 711 745

[7] J. W. Costerton, P. S. Stewart, E. Greenberg Bacterial biofilms: a common cause of persistent infections Science 1999 1318 1322

[8] J. Crank, Free and Moving Boundary Problems, Clarendon Press Oxford, 1984.

[9] E. L. Cussler, Diffusion: mass transfer in fluid systems, Cambridge University Press, 2009.

[10] B. D’Acunto, L. Frunzo, M. Mattei Qualitative analysis of the moving boundary problem for a biofilm reactor model Journal of Mathematical Analysis and Applications 2016 474 491

[11] E. K. Davenport, D. R. Call, H. Beyenal Differential protection from tobramycin by extracellular polymeric substances from Acinetobacter baumannii and Staphylococcus aureus biofilms Antimicrobial Agents and Chemotherapy 2014 4755 4761

[12] M. E. Davey, G. A. O’Toole Microbial Biofilms: from ecology to molecular genetics Microbiology and Molecular Biology Reviews 2000 847 867

[13] J. Dockery, I. Klapper Finger formation in biofilm layers SIAM J. Appl. Math 2001 853 869

[14] R. M. Donlan Biofilms: microbial life on surfaces Emerging infectious Diseases 2002 881 890

[15] D. Espeso, A. Carpio, B. Einarsson Differential growth of wrinkled biofilms Physical Review E 2015 022710

[16] A. S. Fleischer, Thermal Energy Storage Using Phase Change Materials: Fundamentals and Applications, Springer, 2015.

[17] M. R. Frederick, C. Kuttler, B. A. Hense, H. J. Eberl A mathematical model of quorum sensing regulated EPS production in biofilm communities Theoretical Biology and Medical Modelling 2011 1 29

[18] J. Gerwig, T. B. Kiley, K. Gunka, N. Stanley-Wall, J. Stülke The protein tyrosine kinases EpsB and PtkA differentially affect biofilm formation in Bacillus subtilis Microbiology 2014 682 691

[19] C. Giverso, M. Verani, P. Ciarletta Branching instability in expanding bacterial colonies Journal of The Royal Society Interface 2015 20141290

[20] A. E. Goodman, K. C. Marshall, Genetic Responses of Bacteria at Surfaces, in Microbial Biofilms, H. M. Lappin-Scott and J. W. Costerton, eds., Cambridge University Press, 1995, pp. 80–98. Cambridge Books Online.

[21] L. Hall-Stoodley, P. Stoodley Evolving concepts in biofilm infections Cellular Microbiology 2009 1034 1043

[22] C. S. Laspidou, B. E. Rittmann Modeling the development of biofilm density including active bacteria, inert biomass, and extracellular polymeric substances Water Research 2004 3349 3361

[23] Z. Lewandowski, Biofilms: Recent Advances in their Study and Control, Harwood Academic Publishers, 2000, pp. 1–17.

[24] B. Q. Li, Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer, Springer Science Business Media, 2005.

[25] D. López, H. Vlamakis, R. Kolter Biofilms Cold Spring Harbor perspectives in Biology 2010 a000398

[26] M. Mimura, H. Sakaguchi, M. Matsushita Reaction-diffusion modelling of bacterial colony patterns Physica A: Statistical Mechanics and its Applications 2000 283 303

[27] G. O’Toole, H. Kaplan, R. Kolter Biofilm formation as microbial development Annual Review of Microbiology 2000 49 79

[28] D. Schultz, P. G. Wolynes, E. B. Jacob, J. N. Onuchic Deciding fate in adverse times: sporulation and competence in Bacillus subtilis Proceedings of the National Academy of Sciences 2009 21027 21034

[29] A. Seminara, T. E. Angelini, J. N. Wilking, H. Vlamakis, S. Ebrahim, R. Kolter, D. A. Weitz, M. P. Brenner Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix Proceedings of the National Academy of Sciences 2012 1116 1121

[30] P. S. Stewart Diffusion in Biofilms Journal of Bacteriology 2003 1485 1491

[31] P. S. Stewart, M. J. Franklin Physiological heterogeneity in biofilms Nature Reviews Microbiology 2008 199 210

[32] Y. Tang, A. J. Valocchi An improved cellular automaton method to model multispecies biofilms Water Research 2013 5729 5742

[33] M. Trejo, C. Douarche, V. Bailleux, C. Poulard, S. Mariot, C. Regeard, E. Raspaud Elasticity and wrinkled morphology of Bacillus subtilis pellicles Proceedings of the National Academy of Sciences 2013 2011 2016

[34] X. Wang, S. A. Koehler, J. N. Wilking, N. N. Sinha, M. T. Cabeen, S. Srinivasan, A. Seminara, S. Rubinstein, Q. Sun, M. P. Brenner Probing phenotypic growth in expanding Bacillus subtilis biofilms Applied microbiology and biotechnology 2016 4607 4615

[35] J. S. Webb, M. Givskov, S. Kjelleberg Bacterial biofilms: prokaryotic adventures in multicellularity Current opinion in microbiology 2003 578 585

[36] J. S. Webb, L. S. Thompson, S. James, T. Charlton, T. Tolker-Nielsen, B. Koch, M. Givskov, S. Kjelleberg Cell death in Pseudomonas aeruginosa biofilm development Journal of Bacteriology 2003 4585 4592

[37] W. Zhang, A. Seminara, M. Suaris, M. P. Brenner, D. A. Weitz, T. E. Angelini Nutrient depletion in Bacillus subtilis biofilms triggers matrix production New Journal of Physics 2014 015028

Cité par Sources :