Voir la notice de l'article provenant de la source EDP Sciences
H. A. Wallace 1 ; L. Li 1 ; F. A. Davidson 1
@article{MMNP_2016_11_5_a2, author = {H. A. Wallace and L. Li and F. A. Davidson}, title = {The {Effect} of {Cell} {Death} on the {Stability} of a {Growing} {Biofilm}}, journal = {Mathematical modelling of natural phenomena}, pages = {33--48}, publisher = {mathdoc}, volume = {11}, number = {5}, year = {2016}, doi = {10.1051/mmnp/201611503}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611503/} }
TY - JOUR AU - H. A. Wallace AU - L. Li AU - F. A. Davidson TI - The Effect of Cell Death on the Stability of a Growing Biofilm JO - Mathematical modelling of natural phenomena PY - 2016 SP - 33 EP - 48 VL - 11 IS - 5 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611503/ DO - 10.1051/mmnp/201611503 LA - en ID - MMNP_2016_11_5_a2 ER -
%0 Journal Article %A H. A. Wallace %A L. Li %A F. A. Davidson %T The Effect of Cell Death on the Stability of a Growing Biofilm %J Mathematical modelling of natural phenomena %D 2016 %P 33-48 %V 11 %N 5 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611503/ %R 10.1051/mmnp/201611503 %G en %F MMNP_2016_11_5_a2
H. A. Wallace; L. Li; F. A. Davidson. The Effect of Cell Death on the Stability of a Growing Biofilm. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 5, pp. 33-48. doi : 10.1051/mmnp/201611503. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611503/
[1] Localized cell death focuses mechanical forces during 3D patterning in a biofilm Proceedings of the National Academy of Sciences 2012 18891 18896
, , , , , , , , ,[2] A multiscale model of biofilm as a senescence-structured fluid Multiscale Modeling & Simulation 2007 347 365
,[3] Characterization of structures in biofilms formed by a Pseudomonas fluorescens isolated from soil BMC Microbiology 2009 103
, , , , , ,[4] Biofilms: the matrix revisited Trends in Microbiology 2005 20 26
, , ,[5] Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms Molecular Microbiology 2014 587 598
, ,[6] Microbial biofilms Annual Review of Microbiology 1995 711 745
, , , ,[7] Bacterial biofilms: a common cause of persistent infections Science 1999 1318 1322
, ,[8] J. Crank, Free and Moving Boundary Problems, Clarendon Press Oxford, 1984.
[9] E. L. Cussler, Diffusion: mass transfer in fluid systems, Cambridge University Press, 2009.
[10] Qualitative analysis of the moving boundary problem for a biofilm reactor model Journal of Mathematical Analysis and Applications 2016 474 491
, ,[11] Differential protection from tobramycin by extracellular polymeric substances from Acinetobacter baumannii and Staphylococcus aureus biofilms Antimicrobial Agents and Chemotherapy 2014 4755 4761
, ,[12] Microbial Biofilms: from ecology to molecular genetics Microbiology and Molecular Biology Reviews 2000 847 867
,[13] Finger formation in biofilm layers SIAM J. Appl. Math 2001 853 869
,[14] Biofilms: microbial life on surfaces Emerging infectious Diseases 2002 881 890
[15] Differential growth of wrinkled biofilms Physical Review E 2015 022710
, ,[16] A. S. Fleischer, Thermal Energy Storage Using Phase Change Materials: Fundamentals and Applications, Springer, 2015.
[17] A mathematical model of quorum sensing regulated EPS production in biofilm communities Theoretical Biology and Medical Modelling 2011 1 29
, , ,[18] The protein tyrosine kinases EpsB and PtkA differentially affect biofilm formation in Bacillus subtilis Microbiology 2014 682 691
, , , ,[19] Branching instability in expanding bacterial colonies Journal of The Royal Society Interface 2015 20141290
, ,[20] A. E. Goodman, K. C. Marshall, Genetic Responses of Bacteria at Surfaces, in Microbial Biofilms, H. M. Lappin-Scott and J. W. Costerton, eds., Cambridge University Press, 1995, pp. 80–98. Cambridge Books Online.
[21] Evolving concepts in biofilm infections Cellular Microbiology 2009 1034 1043
,[22] Modeling the development of biofilm density including active bacteria, inert biomass, and extracellular polymeric substances Water Research 2004 3349 3361
,[23] Z. Lewandowski, Biofilms: Recent Advances in their Study and Control, Harwood Academic Publishers, 2000, pp. 1–17.
[24] B. Q. Li, Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer, Springer Science Business Media, 2005.
[25] Biofilms Cold Spring Harbor perspectives in Biology 2010 a000398
, ,[26] Reaction-diffusion modelling of bacterial colony patterns Physica A: Statistical Mechanics and its Applications 2000 283 303
, ,[27] Biofilm formation as microbial development Annual Review of Microbiology 2000 49 79
, ,[28] Deciding fate in adverse times: sporulation and competence in Bacillus subtilis Proceedings of the National Academy of Sciences 2009 21027 21034
, , ,[29] Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix Proceedings of the National Academy of Sciences 2012 1116 1121
, , , , , , ,[30] Diffusion in Biofilms Journal of Bacteriology 2003 1485 1491
[31] Physiological heterogeneity in biofilms Nature Reviews Microbiology 2008 199 210
,[32] An improved cellular automaton method to model multispecies biofilms Water Research 2013 5729 5742
,[33] Elasticity and wrinkled morphology of Bacillus subtilis pellicles Proceedings of the National Academy of Sciences 2013 2011 2016
, , , , , ,[34] Probing phenotypic growth in expanding Bacillus subtilis biofilms Applied microbiology and biotechnology 2016 4607 4615
, , , , , , , , ,[35] Bacterial biofilms: prokaryotic adventures in multicellularity Current opinion in microbiology 2003 578 585
, ,[36] Cell death in Pseudomonas aeruginosa biofilm development Journal of Bacteriology 2003 4585 4592
, , , , , , ,[37] Nutrient depletion in Bacillus subtilis biofilms triggers matrix production New Journal of Physics 2014 015028
, , , , ,Cité par Sources :