Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2016_11_5_a1, author = {A. Madzvamuse and A. H. Chung}, title = {Analysis and {Simulations} of {Coupled} {Bulk-surface} {Reaction-Diffusion} {Systems} on {Exponentially} {Evolving} {Volumes}}, journal = {Mathematical modelling of natural phenomena}, pages = {4--32}, publisher = {mathdoc}, volume = {11}, number = {5}, year = {2016}, doi = {10.1051/mmnp/201611502}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611502/} }
TY - JOUR AU - A. Madzvamuse AU - A. H. Chung TI - Analysis and Simulations of Coupled Bulk-surface Reaction-Diffusion Systems on Exponentially Evolving Volumes JO - Mathematical modelling of natural phenomena PY - 2016 SP - 4 EP - 32 VL - 11 IS - 5 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611502/ DO - 10.1051/mmnp/201611502 LA - en ID - MMNP_2016_11_5_a1 ER -
%0 Journal Article %A A. Madzvamuse %A A. H. Chung %T Analysis and Simulations of Coupled Bulk-surface Reaction-Diffusion Systems on Exponentially Evolving Volumes %J Mathematical modelling of natural phenomena %D 2016 %P 4-32 %V 11 %N 5 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611502/ %R 10.1051/mmnp/201611502 %G en %F MMNP_2016_11_5_a1
A. Madzvamuse; A. H. Chung. Analysis and Simulations of Coupled Bulk-surface Reaction-Diffusion Systems on Exponentially Evolving Volumes. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 5, pp. 4-32. doi : 10.1051/mmnp/201611502. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611502/
[1] W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, T.D. Young (2013). The deal.II Library, Version 8.1, arXiv preprint.
[2] The surface finite element method for pattern formation on evolving biological surfaces Journal of Math. Bio. 2011 1095 1119
, ,[3] Bulk, Surface properties and water uptake mechanisms of salt/acid amorphous composite systems Int. J. Pharm. 2013 456143 152
, , , , ,[4] Evaluation of bulk surface flux algorithms for light wind conditions using data from the Coupled Ocean-Atmosphere Response Experiment (COARE) Q. J. R. Meteorol. Soc. 1999 1551 1588
,[5] Bulk-mediated diffusion on a planar surface: Full solution Phys. Rev. E. 2012 041101
, , , ,[6] Surface finite elements for parabolic equations J. Comp. Math. 2007 385 407
,[7] Finite element analysis for a coupled bulk-surface partial differential equation IMA J. Num. Anal. 2012 377 402
,[8] Modelling cell motility and chemotaxis with evolving surface finite elements J. Roy. Soc. Inter. 2013 3027 3044
, ,[9] Weak localization and antilocalization in topological insulator thin films with coherent bulk-surface coupling Phys. Rev. B 2012 035422
,[10] A theory of biological pattern formation Kybernetik 1972 30 39
,[11] Modelling of surfactant concentration in a coupled bulk surface problem PAMM Proc. Appl. Math. Mech. 2014 525 526
, ,[12] Characterization of Turing diffusion-driven instability on evolving domains Discrete and Continuous Dynamical Systems,- Series A 2012 3975 4000
, ,[13] The use of hyperbolic cosines in solving cubic polynomials Mathematical Gazette 2002 473 477
[14] D. Köster, O. Kriessl, K.G. Siebert. Design of finite element tools for coupled surface and volume meshes. Mathematik. Technical Report, 2008-01, (2008).
[15] Modeling the coupled effects of interfacial and bulk phenomena during solution crystal growth J. Cry. Growth 2001 328 335
,[16] Implicit–Explicit Timestepping with Finite Element Approximation of Reaction–Diffusion Systems on Evolving Domains SINUM 2013 2309 2330
, ,[17] Membrane-bound Turing patterns Phys. Rev. E. 2005
,[18] Simple computation of reaction-diffusion processes on point clouds Proc. Nat. Acad. Sci. 2013 9209 9214
, ,[19] A computational method for the coupled solution of reaction-diffusion equations on evolving domains and manifolds: Application to a model of cell migration and chemotaxis Journal of Computational Physics 2016 207 226
, , ,[20] A. Madzvamuse. A numerical approach to the study of spatial pattern formation. DPhil Thesis. University of Oxford, (2000).
[21] Stability analysis of non-autonomous reaction-diffusion systems: The effects of growing domains Journal of Mathematical Biology 2010 133 164
, ,[22] Fully implicit time-stepping schemes and non-linear solvers for systems of reaction-diffusion equations Appl. Math. Comp. 2014 361 374
,[23] Exhibiting cross-diffusion-induced patterns for reaction-diffusion systems on evolving domains and surfaces Physical Review E. 2014
,[24] Stability analysis and simulations of coupled bulk-surface reaction-diffusion systems Proc. Roy. Soc. A. 2015 20140546
, ,[25] Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations Journal of Mathematical Biology 2015 709 743
, ,[26] The bulk-surface finite element method for reaction-diffusion systems on stationary volumes Finite Elements in Analysis and Design 2016 9 21
,[27] Stability analysis of reaction-diffusion models on evolving domains: the effects of cross-diffusion Discrete and Continuous Dynamical Systems - Series A 2016 2133 217
, ,[28] Proton diffusion along biological membranes J. Phys. Condens. Matter. 2011 234103
,[29] Mechanism of long-range proton translocation along biological membranes FEBS Lettes 2013 345 349
,[30] J.D. Murray. Mathematical Biology II: Spatial models and biomedical applications. Third Edition. Springer, (2003).
[31] Reaction-diffusion patterns in plant tip morphogenesis: bifurcations on spherical caps Bull. Math. Biol. 2013 2346 2371
, ,[32] Surface and bulk characterisation of electrospun membranes: Problems and improvements Colloids and Surfaces B: Biointerfaces. 2009 1 12
, , , , ,[33] Diffusion on a curved surface coupled to diffusion in the volume: Application to cell biology J. Comp. Phys. 2007 1271 1290
, , , , ,[34] Symmetry breaking instabilities in dissipative systems. II J. Chem. Phys. 1968 1695 1700
,[35] Turing instabilities in a mathematical model for signaling networks J. Math. Biol. 2012 1215 1244
,[36] A. Rätz, M. Röger. Symmetry breaking in a bulk-surface reaction-diffusion model for signaling networks. arXiv:1305.6172v1, (2013).
[37] The stability of localized spot patterns for the Brusselator on the sphere SIADS 2014 564 627
, ,[38] Y. Saad. Iterative Methods for Sparse Linear Systems (2nd ed.). SIAM., (2003), 231–234. ISBN 978-0-89871-534-7.
[39] Simple chemical reaction systems with limit cycle behaviour J. Theor. Biol. 1979 389 400
[40] N. Tuncer, A. Madzvamuse, Projected finite elements for systems of reaction-diffusion equations on closed evolving spheroidal surfaces. Communications in Computational Physics. Accepted (2016).
[41] On the chemical basis of morphogenesis Phil. Trans. Royal Soc. B. 1952 37 72
[42] A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems SIAM J. Sci. and Stat. Comput. 1992 631 644
[43] Global existence for semilinear reaction-diffusion systems on evolving domains J. Math. Biol. 2012 41 67
, ,[44] Modeling parr-mark pattern formation during the early development of Amago trout Phys. Rev. E 2011 041923
, , , ,Cité par Sources :