Analysis and Simulations of Coupled Bulk-surface Reaction-Diffusion Systems on Exponentially Evolving Volumes
Mathematical modelling of natural phenomena, Tome 11 (2016) no. 5, pp. 4-32.

Voir la notice de l'article provenant de la source EDP Sciences

In this article we present a system of coupled bulk-surface reaction-diffusion equations on exponentially evolving volumes. Detailed linear stability analysis of the homogeneous steady state is carried out. It turns out that due to the nature of the coupling (linear Robin-type boundary conditions) the characterisation of the dispersion relation in the absence and presence of spatial variation (i.e. diffusion), can be decomposed as a product of the dispersion relation of the bulk and surface models thereby allowing detailed analytical tractability. As a result we state and prove the conditions for diffusion-driven instability for systems of coupled bulk-surface reaction-diffusion equations. Furthermore, we plot explicit evolving parameter spaces for the case of an exponential growth. By selecting parameter values from the parameter spaces, we exhibit pattern formation in the bulk and on the surface in complete agreement with theoretical predictions.
DOI : 10.1051/mmnp/201611502

A. Madzvamuse 1 ; A. H. Chung 2

1 University of Sussex, School of Mathematical and Physical Sciences, Department of Mathematics, Pevensey III, 5C15, Brighton, BN1 9QH, UK
2 34-36 St. Georges Road, Brighton, BN2 1ED, UK
@article{MMNP_2016_11_5_a1,
     author = {A. Madzvamuse and A. H. Chung},
     title = {Analysis and {Simulations} of {Coupled} {Bulk-surface} {Reaction-Diffusion} {Systems} on {Exponentially} {Evolving} {Volumes}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {4--32},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2016},
     doi = {10.1051/mmnp/201611502},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611502/}
}
TY  - JOUR
AU  - A. Madzvamuse
AU  - A. H. Chung
TI  - Analysis and Simulations of Coupled Bulk-surface Reaction-Diffusion Systems on Exponentially Evolving Volumes
JO  - Mathematical modelling of natural phenomena
PY  - 2016
SP  - 4
EP  - 32
VL  - 11
IS  - 5
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611502/
DO  - 10.1051/mmnp/201611502
LA  - en
ID  - MMNP_2016_11_5_a1
ER  - 
%0 Journal Article
%A A. Madzvamuse
%A A. H. Chung
%T Analysis and Simulations of Coupled Bulk-surface Reaction-Diffusion Systems on Exponentially Evolving Volumes
%J Mathematical modelling of natural phenomena
%D 2016
%P 4-32
%V 11
%N 5
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611502/
%R 10.1051/mmnp/201611502
%G en
%F MMNP_2016_11_5_a1
A. Madzvamuse; A. H. Chung. Analysis and Simulations of Coupled Bulk-surface Reaction-Diffusion Systems on Exponentially Evolving Volumes. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 5, pp. 4-32. doi : 10.1051/mmnp/201611502. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611502/

[1] W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, T.D. Young (2013). The deal.II Library, Version 8.1, arXiv preprint.

[2] R. Barreira, C.M. Elliott, A. Madzvamuse The surface finite element method for pattern formation on evolving biological surfaces Journal of Math. Bio. 2011 1095 1119

[3] S. Bianco, F. Tewes, L. Tajber, V. Caron, O.I. Corrigan, A.M. Healy Bulk, Surface properties and water uptake mechanisms of salt/acid amorphous composite systems Int. J. Pharm. 2013 456143 152

[4] H.R. Chang, R.L. Grossman Evaluation of bulk surface flux algorithms for light wind conditions using data from the Coupled Ocean-Atmosphere Response Experiment (COARE) Q. J. R. Meteorol. Soc. 1999 1551 1588

[5] A.V. Chechkin, I.M. Zaid, M.A. Lomholt, I.M. Sokolov, R. Metzler Bulk-mediated diffusion on a planar surface: Full solution Phys. Rev. E. 2012 041101

[6] G. Dziuk, C.M. Elliott Surface finite elements for parabolic equations J. Comp. Math. 2007 385 407

[7] C.M. Elliott, T. Ranner Finite element analysis for a coupled bulk-surface partial differential equation IMA J. Num. Anal. 2012 377 402

[8] C.M. Elliott, B. Stinner, C. Venkataraman Modelling cell motility and chemotaxis with evolving surface finite elements J. Roy. Soc. Inter. 2013 3027 3044

[9] I. Garate, L. Glazman Weak localization and antilocalization in topological insulator thin films with coherent bulk-surface coupling Phys. Rev. B 2012 035422

[10] A. Gierer, H. Meinhardt A theory of biological pattern formation Kybernetik 1972 30 39

[11] A. Hahn, K. Held, L. Tobiska Modelling of surfactant concentration in a coupled bulk surface problem PAMM Proc. Appl. Math. Mech. 2014 525 526

[12] G. Hetzer, A. Madzvamuse, W. Shen Characterization of Turing diffusion-driven instability on evolving domains Discrete and Continuous Dynamical Systems,- Series A 2012 3975 4000

[13] G.C. Holmes The use of hyperbolic cosines in solving cubic polynomials Mathematical Gazette 2002 473 477

[14] D. Köster, O. Kriessl, K.G. Siebert. Design of finite element tools for coupled surface and volume meshes. Mathematik. Technical Report, 2008-01, (2008).

[15] Y. Kwon, J.J. Derby Modeling the coupled effects of interfacial and bulk phenomena during solution crystal growth J. Cry. Growth 2001 328 335

[16] O. Lakkis, A. Madzvamuse, C. Venkataraman Implicit–Explicit Timestepping with Finite Element Approximation of Reaction–Diffusion Systems on Evolving Domains SINUM 2013 2309 2330

[17] H. Levine, W.J. Rappel Membrane-bound Turing patterns Phys. Rev. E. 2005

[18] C.B. Macdonald, B. Merrimanb, S.J. Ruuth Simple computation of reaction-diffusion processes on point clouds Proc. Nat. Acad. Sci. 2013 9209 9214

[19] G. Macdonald, J.A. Mackenzie, M. Nolan, R.H. Insall A computational method for the coupled solution of reaction-diffusion equations on evolving domains and manifolds: Application to a model of cell migration and chemotaxis Journal of Computational Physics 2016 207 226

[20] A. Madzvamuse. A numerical approach to the study of spatial pattern formation. DPhil Thesis. University of Oxford, (2000).

[21] A. Madzvamuse, E.A. Gaffney, P.K. Maini Stability analysis of non-autonomous reaction-diffusion systems: The effects of growing domains Journal of Mathematical Biology 2010 133 164

[22] A. Madzvamuse, A.H.W. Chung Fully implicit time-stepping schemes and non-linear solvers for systems of reaction-diffusion equations Appl. Math. Comp. 2014 361 374

[23] A. Madzvamuse, R. Barreira Exhibiting cross-diffusion-induced patterns for reaction-diffusion systems on evolving domains and surfaces Physical Review E. 2014

[24] A. Madzvamuse, A.H.W. Chung, C. Venkataraman Stability analysis and simulations of coupled bulk-surface reaction-diffusion systems Proc. Roy. Soc. A. 2015 20140546

[25] A. Madzvamuse, H.S. Ndakwo, R. Barreira Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations Journal of Mathematical Biology 2015 709 743

[26] A. Madzvamuse, A.H.W. Chung The bulk-surface finite element method for reaction-diffusion systems on stationary volumes Finite Elements in Analysis and Design 2016 9 21

[27] A. Madzvamuse, H.S. Ndakwo, R. Barreira Stability analysis of reaction-diffusion models on evolving domains: the effects of cross-diffusion Discrete and Continuous Dynamical Systems - Series A 2016 2133 217

[28] E.S. Medvedev, A.A. Stuchebrukhov Proton diffusion along biological membranes J. Phys. Condens. Matter. 2011 234103

[29] E.S. Medvedev, A.A. Stuchebrukhov Mechanism of long-range proton translocation along biological membranes FEBS Lettes 2013 345 349

[30] J.D. Murray. Mathematical Biology II: Spatial models and biomedical applications. Third Edition. Springer, (2003).

[31] W. Nagata, H.R.Z. Zangeneh, D.M. Holloway Reaction-diffusion patterns in plant tip morphogenesis: bifurcations on spherical caps Bull. Math. Biol. 2013 2346 2371

[32] D.R. Nisbet, A.E. Rodda, D.I. Finkelstein, M.K. Horne, J.S. Forsythe, W Shen Surface and bulk characterisation of electrospun membranes: Problems and improvements Colloids and Surfaces B: Biointerfaces. 2009 1 12

[33] I.L. Novak, F. Gao, Y-S. Choi, D. Resasco, J.C. Schaff, B.M. Slepchenko Diffusion on a curved surface coupled to diffusion in the volume: Application to cell biology J. Comp. Phys. 2007 1271 1290

[34] I. Prigogine, R. Lefever Symmetry breaking instabilities in dissipative systems. II J. Chem. Phys. 1968 1695 1700

[35] A. Rätz, M. Röger Turing instabilities in a mathematical model for signaling networks J. Math. Biol. 2012 1215 1244

[36] A. Rätz, M. Röger. Symmetry breaking in a bulk-surface reaction-diffusion model for signaling networks. arXiv:1305.6172v1, (2013).

[37] I. Rozada, S. Ruuth, M.J. Ward The stability of localized spot patterns for the Brusselator on the sphere SIADS 2014 564 627

[38] Y. Saad. Iterative Methods for Sparse Linear Systems (2nd ed.). SIAM., (2003), 231–234. ISBN 978-0-89871-534-7.

[39] J. Schnakenberg Simple chemical reaction systems with limit cycle behaviour J. Theor. Biol. 1979 389 400

[40] N. Tuncer, A. Madzvamuse, Projected finite elements for systems of reaction-diffusion equations on closed evolving spheroidal surfaces. Communications in Computational Physics. Accepted (2016).

[41] A. Turing On the chemical basis of morphogenesis Phil. Trans. Royal Soc. B. 1952 37 72

[42] H.A. Van Der Vorst A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems SIAM J. Sci. and Stat. Comput. 1992 631 644

[43] C. Venkataraman, O. Lakkis, A. Madzvamuse Global existence for semilinear reaction-diffusion systems on evolving domains J. Math. Biol. 2012 41 67

[44] C. Venkataraman, T. Sekimura, E.A. Gaffney, P.K. Maini, A. Madzvamuse Modeling parr-mark pattern formation during the early development of Amago trout Phys. Rev. E 2011 041923

Cité par Sources :