Preface. Bifurcations and Pattern Formation in Biological Applications
Mathematical modelling of natural phenomena, Tome 11 (2016) no. 5, pp. 1-3.

Voir la notice de l'article provenant de la source EDP Sciences

In the preface we present a short overview of articles included in the issue “Bifurcations and pattern formation in biological applications” of the journal Mathematical Modelling of Natural Phenomena.
DOI : 10.1051/mmnp/201611501

A. Morozov 1 ; M. Ptashnyk 2 ; V. Volpert 3

1 Department of Mathematics, University of Leicester, LE1 7RH Leicester, UK
2 Department of Mathematics, University of Dundee, DD1 4HN Dundee, UK
3 Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France
@article{MMNP_2016_11_5_a0,
     author = {A. Morozov and M. Ptashnyk and V. Volpert},
     title = {Preface. {Bifurcations} and {Pattern} {Formation} in {Biological} {Applications}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {1--3},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2016},
     doi = {10.1051/mmnp/201611501},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611501/}
}
TY  - JOUR
AU  - A. Morozov
AU  - M. Ptashnyk
AU  - V. Volpert
TI  - Preface. Bifurcations and Pattern Formation in Biological Applications
JO  - Mathematical modelling of natural phenomena
PY  - 2016
SP  - 1
EP  - 3
VL  - 11
IS  - 5
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611501/
DO  - 10.1051/mmnp/201611501
LA  - en
ID  - MMNP_2016_11_5_a0
ER  - 
%0 Journal Article
%A A. Morozov
%A M. Ptashnyk
%A V. Volpert
%T Preface. Bifurcations and Pattern Formation in Biological Applications
%J Mathematical modelling of natural phenomena
%D 2016
%P 1-3
%V 11
%N 5
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611501/
%R 10.1051/mmnp/201611501
%G en
%F MMNP_2016_11_5_a0
A. Morozov; M. Ptashnyk; V. Volpert. Preface. Bifurcations and Pattern Formation in Biological Applications. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 5, pp. 1-3. doi : 10.1051/mmnp/201611501. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611501/

[1] O. Aydogmus Patterns and transitions to instability in an intraspecific competition model with nonlocal diffusion and interaction Math. Model. Nat. Phenom 2015 17 29

[2] M. Banerjee, L. Zhang Stabilizing role of nonlocal interaction on spatial pattern formation Math. Model. Nat. Phenom. 2016 103 118

[3] A. Bayliss, V.A. Volpert Patterns for competing populations with species specific nonlocal coupling Math. Model. Nat. Phenom 2015 30 47

[4] T. Biancalani, D. Fanelli, F. Di Patti Stochastic Turing patterns in the Brusselator model. Phys. Rev. 2010 046215

[5] A.E.F. Burgess, P.G. Schofield, S.F. Hubbard, M.A.J. Chaplain, T. Lorenzi Dynamical patterns of coexisting strategies in a hybrid discrete-continuum spatial evolutionary game model Math. Model. Nat. Phenom. 2016 49 64

[6] M.A.J. Chaplain, G. Lolas Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity Netw. Heterog 2006 399 439

[7] E.J. Crampin, E.A. Gaffney, P.K. Maini Reaction and diffusion on growing domains: scenarios for robust pattern formation Bull. Math. Biol. 1999 1093 1120

[8] H. Deng, A.V. Holden, L.F. Olsen (Editors), Chaos in Biological Systems, Springer 1987.

[9] R. Eftimie, C.K. Macnamara, J. Dushoff, J.L. Bramson, D.J.D. Earn Bifurcations and chaotic dynamics in a tumour-immune-virus system Math. Model. Nat. Phenom. 2016 65 85

[10] A. Gierer, H. Meinhardt Theory of biological pattern formation Kybernetik 1972 30 39

[11] J. Kelkel, C. Surulescu On a stochastic reaction-diffusion system modeling pattern formation on seashells J. Math. Biol. 2010 765 96

[12] S. Kondo, R. Asal A reaction-diffusion wave on skin of the marine angelfish Pomacanthus Nature 1995 765 768

[13] A. Madzvamuse, A.H. Chung Analysis and simulations of coupled bulk-surface reaction-diffusion systems on exponentially evolving volumes Math. Model. Nat. Phenom. 2016 4 32

[14] P.K. Maini, T.E. Woolley, R.E. Baker, E.A. Gaffney, S.S. Lee Turing’s model for biological pattern formation and the robustness problem Interface Focus 2012 487 496

[15] A.J. Mckane, T. Biancalani, T. Rogers Stochastic pattern formation and spontaneous polarisation: the linear noise approximation and beyond Bull. Math. Biol. 2014 895 921

[16] H. Meinhardt, Modelling of biological pattern formation, Academic Press, London, 1982.

[17] J.D. Murray, G. Oster Generation of biological pattern and form IMA J. Math. Med. Biol. 1984 1 25

[18] K.J. Painter, T. Hillen Spatio-temporal chaos in a chemotaxis model Physica D 2011 363 375

[19] J.A. Sherratt Using numerical bifurcation analysis to study pattern formation in mussel beds Math. Model. Nat. Phenom. 2016 86 102

[20] I. Siekmann, H. Malchow Fighting enemies and noise: Competition of residents and invaders in a stochastically fluctuating environment Math. Model. Nat. Phenom. 2016 137 157

[21] A.M. Turing Chemical basis of morphogenesis Phil. Trans. R. Soc. Lond. 1952 37 72

[22] D. Valenti, A. Giuffrida, G. Denaro, N. Pizzolato, L. Curcio, B. Spagnolo, S. Mazzola, G. Basilone, A. Bonanno Noise induced phenomena in population dynamics Math. Model. Nat. Phenom. 2016 158 174

[23] D. Valenti, G. Denaro, F. Giarratana, A. Giuffrida, S. Mazzola, G. Basilone, S. Aronica, A. Bonanno, B. Spagnolo Modeling of sensory characteristics based on the growth of food spoilage bacteria Math. Model. Nat. Phenom. 2016 119 136

[24] H.A. Wallace, L. Li, F.A. Davidson Instability in a moving boundary: heterogeneous growth of bacterial biofilms Math. Model. Nat. Phenom. 2016 33 48

Cité par Sources :