Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2016_11_5_a0, author = {A. Morozov and M. Ptashnyk and V. Volpert}, title = {Preface. {Bifurcations} and {Pattern} {Formation} in {Biological} {Applications}}, journal = {Mathematical modelling of natural phenomena}, pages = {1--3}, publisher = {mathdoc}, volume = {11}, number = {5}, year = {2016}, doi = {10.1051/mmnp/201611501}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611501/} }
TY - JOUR AU - A. Morozov AU - M. Ptashnyk AU - V. Volpert TI - Preface. Bifurcations and Pattern Formation in Biological Applications JO - Mathematical modelling of natural phenomena PY - 2016 SP - 1 EP - 3 VL - 11 IS - 5 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611501/ DO - 10.1051/mmnp/201611501 LA - en ID - MMNP_2016_11_5_a0 ER -
%0 Journal Article %A A. Morozov %A M. Ptashnyk %A V. Volpert %T Preface. Bifurcations and Pattern Formation in Biological Applications %J Mathematical modelling of natural phenomena %D 2016 %P 1-3 %V 11 %N 5 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611501/ %R 10.1051/mmnp/201611501 %G en %F MMNP_2016_11_5_a0
A. Morozov; M. Ptashnyk; V. Volpert. Preface. Bifurcations and Pattern Formation in Biological Applications. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 5, pp. 1-3. doi : 10.1051/mmnp/201611501. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611501/
[1] Patterns and transitions to instability in an intraspecific competition model with nonlocal diffusion and interaction Math. Model. Nat. Phenom 2015 17 29
[2] Stabilizing role of nonlocal interaction on spatial pattern formation Math. Model. Nat. Phenom. 2016 103 118
,[3] Patterns for competing populations with species specific nonlocal coupling Math. Model. Nat. Phenom 2015 30 47
,[4] Stochastic Turing patterns in the Brusselator model. Phys. Rev. 2010 046215
, ,[5] Dynamical patterns of coexisting strategies in a hybrid discrete-continuum spatial evolutionary game model Math. Model. Nat. Phenom. 2016 49 64
, , , ,[6] Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity Netw. Heterog 2006 399 439
,[7] Reaction and diffusion on growing domains: scenarios for robust pattern formation Bull. Math. Biol. 1999 1093 1120
, ,[8] H. Deng, A.V. Holden, L.F. Olsen (Editors), Chaos in Biological Systems, Springer 1987.
[9] Bifurcations and chaotic dynamics in a tumour-immune-virus system Math. Model. Nat. Phenom. 2016 65 85
, , , ,[10] Theory of biological pattern formation Kybernetik 1972 30 39
,[11] On a stochastic reaction-diffusion system modeling pattern formation on seashells J. Math. Biol. 2010 765 96
,[12] A reaction-diffusion wave on skin of the marine angelfish Pomacanthus Nature 1995 765 768
,[13] Analysis and simulations of coupled bulk-surface reaction-diffusion systems on exponentially evolving volumes Math. Model. Nat. Phenom. 2016 4 32
,[14] Turing’s model for biological pattern formation and the robustness problem Interface Focus 2012 487 496
, , , ,[15] Stochastic pattern formation and spontaneous polarisation: the linear noise approximation and beyond Bull. Math. Biol. 2014 895 921
, ,[16] H. Meinhardt, Modelling of biological pattern formation, Academic Press, London, 1982.
[17] Generation of biological pattern and form IMA J. Math. Med. Biol. 1984 1 25
,[18] Spatio-temporal chaos in a chemotaxis model Physica D 2011 363 375
,[19] Using numerical bifurcation analysis to study pattern formation in mussel beds Math. Model. Nat. Phenom. 2016 86 102
[20] Fighting enemies and noise: Competition of residents and invaders in a stochastically fluctuating environment Math. Model. Nat. Phenom. 2016 137 157
,[21] Chemical basis of morphogenesis Phil. Trans. R. Soc. Lond. 1952 37 72
[22] Noise induced phenomena in population dynamics Math. Model. Nat. Phenom. 2016 158 174
, , , , , , , ,[23] Modeling of sensory characteristics based on the growth of food spoilage bacteria Math. Model. Nat. Phenom. 2016 119 136
, , , , , , , ,[24] Instability in a moving boundary: heterogeneous growth of bacterial biofilms Math. Model. Nat. Phenom. 2016 33 48
, ,Cité par Sources :