Voir la notice de l'article provenant de la source EDP Sciences
R. Bravo de la Parra 1 ; M. Marvá 1 ; F. Sansegundo 1
@article{MMNP_2016_11_4_a8, author = {R. Bravo de la Parra and M. Marv\'a and F. Sansegundo}, title = {Fast {Dispersal} in {Semelparous} {Populations}}, journal = {Mathematical modelling of natural phenomena}, pages = {120--134}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2016}, doi = {10.1051/mmnp/201611409}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611409/} }
TY - JOUR AU - R. Bravo de la Parra AU - M. Marvá AU - F. Sansegundo TI - Fast Dispersal in Semelparous Populations JO - Mathematical modelling of natural phenomena PY - 2016 SP - 120 EP - 134 VL - 11 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611409/ DO - 10.1051/mmnp/201611409 LA - en ID - MMNP_2016_11_4_a8 ER -
%0 Journal Article %A R. Bravo de la Parra %A M. Marvá %A F. Sansegundo %T Fast Dispersal in Semelparous Populations %J Mathematical modelling of natural phenomena %D 2016 %P 120-134 %V 11 %N 4 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611409/ %R 10.1051/mmnp/201611409 %G en %F MMNP_2016_11_4_a8
R. Bravo de la Parra; M. Marvá; F. Sansegundo. Fast Dispersal in Semelparous Populations. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 4, pp. 120-134. doi : 10.1051/mmnp/201611409. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611409/
[1] P. Auger, R. Bravo de la Parra, J.-C. Poggiale, E. Sánchez, T. Nguyen-Huu. Aggregation of variables and applications to population dynamics. In: P. Magal, S. Ruan (Eds.). Structured Population Models in Biology and Epidemiology. Lecture Notes in Mathematics 1936, Mathematical Biosciences Subseries, Springer Verlag, Berlin, 2008, 209–263.
[2] Aggregation methods in dynamical systems and applications in population and community dynamics Phys. Life. Rev. 2008 79 105
, , , ,[3] Reduction of Discrete Dynamical Systems with Applications to Dynamics Population Models Math. Model. Nat. Phenom. 2013 107 129
, , ,[4] Periodical insects Am. Nat. 1977 1099 1117
[5] Special issue on movement and dispersal in ecology, epidemiology and environmental science Discret Contin Dyn S B 2015
, , ,[6] J.M. Cushing. An Introduction to Structured Population Dynamics, CBMS-NSF Regional Conference Ser. in Appl. Math Vol. 71. SIAM, Philadelphia, 1998.
[7] Nonlinear semelparous Leslie models Math. Biosci. Eng. 2006 17 36
[8] Three stage semelparous Leslie models J. Math. Biol. 2009 75 104
[9] A dynamic dichotomy for a system of hierarchical difference equations J. Difference Equ. Appl. 2012 1 26
[10] Stable bifurcations in semelparous Leslie models J. Biol. Dyn. 2012 80 102
,[11] On Ebenman's model for the dynamics of a population with competing juveniles and adults Bull. Math. Biol. 1989 687 713
,[12] Year class coexistence or competitive exclusion for strict biennials? J. Math. Biol. 2003 95 131
, ,[13] Aggregation in model ecosystems I: Perfect Aggregation Ecol. Model. 1987 287 302
, ,[14] R. Kon. Competitive exclusion between year-classes in a semelparous biennial population. In Mathematical Modeling of Biological Systems, A. Deutsch, R. Bravo de la Parra, R. de Boer, O. Diekmann, P. Jagers, E. Kisdi, M. Kretzschmar, P. Lansky, H. Metz, eds., Vol. II, Birkhäuser, Boston, MA, 2008, 79–90.
[15] Single-class orbits in nonlinear Leslie matrix models for semelparous populations J. Math. Biol. 2007 781 802
,[16] Permanence of single-species stage-structured models J. Math. Biol. 2004 515 528
, ,[17] Aggregation in model ecosystems. II. Approximate Aggregation J. Math. Appl. Med. Biol. 1989 1 23
, ,[18] M.A. Lewis, P.K. Maini, S.V. Petrovskii (Eds.). Dispersal, Individual Movement and Spatial Ecology: A Mathematical Perspective. Springer-Verlag, Berlin, Heidelberg, 2013.
[19] H. Lischke, T.J. Löffler, P.E. Thornton, N.E. Zimmermann. Up-scaling of biological properties and models to the landscape level. In: F. Kienast, S. Ghosh, O. Wildi (Eds.). A Changing World: Challenges for Landscape Research. Landscape Series 8, Springer Verlag, Berlin, 2007, 273–296.
[20] Aggregation of variables in simulation models of water ecosystems Ecol. Model. 1983 235 240
, ,[21] Theory for Designing Nature Reserves for Single Species Am. Nat. 2005 250 257
, ,[22] Reduction of slow-fast discrete models coupling migration and demography J. Theor. Biol. 2009 371 379
, , ,[23] Two time scales non-linear discrete models approximate reduction J. Differ. Equ. Appl. 2008 607 627
, ,[24] D. Tilman, P. Kareiva. Spatial Ecology. Princeton University Press, Princeton, 1997.
[25] G.M. Viswanathan, M.G.E. da Luz, E.P. Raposo, H.E. Stanley. The Physics of Foraging: An Introduction to Random Searches and Biological Encounters. Cambridge University Press, Cambridge, 2011.
[26] H.H. Wei, F. Lutscher. From Individual Movement Rules to Population Level Patterns: The Case of Central-Place Foragers. In M.A. Lewis, P.K. Maini, S.V. Petrovskii (Eds.). Dispersal, Individual Movement and Spatial Ecology: A Mathematical Perspective. Springer-Verlag, Berlin, Heidelberg, 2013, 159–175.
Cité par Sources :