Fast Dispersal in Semelparous Populations
Mathematical modelling of natural phenomena, Tome 11 (2016) no. 4, pp. 120-134.

Voir la notice de l'article provenant de la source EDP Sciences

We consider a model for the dynamics of a semelparous age-structured population where individuals move among different sites. The model consists of a system of difference equations with two time scales. Individual movements are considered to be fast in comparison to demographic processes. We propose a general model with m + 1 age classes and n different sites. Demography is described locally by a general density dependent Leslie matrix. Dispersal for each age-class is defined by a stochastic matrix depending on the total numbers of individuals in each class. The (m + 1) × n dimensional two time scales system is approximately reduced to an m + 1 dimensional semelparous Leslie model. In the case of 2 age-classes and 2 sites with constant dispersal rates we consider the bifurcation that occurs at the trivial equilibrium using the inherent net reproductive number as the bifurcation parameter. We find that different dispersal strategies can change at the global level the local demographic outcome. This modeling framework can be further used to correctly embed different fast processes in population-level models.
DOI : 10.1051/mmnp/201611409

R. Bravo de la Parra 1 ; M. Marvá 1 ; F. Sansegundo 1

1 U.D. Matemáticas, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
@article{MMNP_2016_11_4_a8,
     author = {R. Bravo de la Parra and M. Marv\'a and F. Sansegundo},
     title = {Fast {Dispersal} in {Semelparous} {Populations}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {120--134},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2016},
     doi = {10.1051/mmnp/201611409},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611409/}
}
TY  - JOUR
AU  - R. Bravo de la Parra
AU  - M. Marvá
AU  - F. Sansegundo
TI  - Fast Dispersal in Semelparous Populations
JO  - Mathematical modelling of natural phenomena
PY  - 2016
SP  - 120
EP  - 134
VL  - 11
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611409/
DO  - 10.1051/mmnp/201611409
LA  - en
ID  - MMNP_2016_11_4_a8
ER  - 
%0 Journal Article
%A R. Bravo de la Parra
%A M. Marvá
%A F. Sansegundo
%T Fast Dispersal in Semelparous Populations
%J Mathematical modelling of natural phenomena
%D 2016
%P 120-134
%V 11
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611409/
%R 10.1051/mmnp/201611409
%G en
%F MMNP_2016_11_4_a8
R. Bravo de la Parra; M. Marvá; F. Sansegundo. Fast Dispersal in Semelparous Populations. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 4, pp. 120-134. doi : 10.1051/mmnp/201611409. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611409/

[1] P. Auger, R. Bravo de la Parra, J.-C. Poggiale, E. Sánchez, T. Nguyen-Huu. Aggregation of variables and applications to population dynamics. In: P. Magal, S. Ruan (Eds.). Structured Population Models in Biology and Epidemiology. Lecture Notes in Mathematics 1936, Mathematical Biosciences Subseries, Springer Verlag, Berlin, 2008, 209–263.

[2] P. Auger, R. Bravo De La Parra, J.-C. Poggiale, E. Sánchez, L. Sanz Aggregation methods in dynamical systems and applications in population and community dynamics Phys. Life. Rev. 2008 79 105

[3] R. Bravo De La Parra, M. Marvá, E. Sánchez, L. Sanz Reduction of Discrete Dynamical Systems with Applications to Dynamics Population Models Math. Model. Nat. Phenom. 2013 107 129

[4] M.G. Bulmer Periodical insects Am. Nat. 1977 1099 1117

[5] R.S. Cantrell, S. Lenhart, Y. Lou, S. Ruan Special issue on movement and dispersal in ecology, epidemiology and environmental science Discret Contin Dyn S B 2015

[6] J.M. Cushing. An Introduction to Structured Population Dynamics, CBMS-NSF Regional Conference Ser. in Appl. Math Vol. 71. SIAM, Philadelphia, 1998.

[7] J.M. Cushing Nonlinear semelparous Leslie models Math. Biosci. Eng. 2006 17 36

[8] J.M. Cushing Three stage semelparous Leslie models J. Math. Biol. 2009 75 104

[9] J.M. Cushing A dynamic dichotomy for a system of hierarchical difference equations J. Difference Equ. Appl. 2012 1 26

[10] J.M. Cushing, S.M. Henson Stable bifurcations in semelparous Leslie models J. Biol. Dyn. 2012 80 102

[11] J.M. Cushing, J. Li On Ebenman's model for the dynamics of a population with competing juveniles and adults Bull. Math. Biol. 1989 687 713

[12] N.V. Davydova, O. Diekmann, S.A. Van Gils Year class coexistence or competitive exclusion for strict biennials? J. Math. Biol. 2003 95 131

[13] Y. Iwasa, V. Andreasen, S. Levin Aggregation in model ecosystems I: Perfect Aggregation Ecol. Model. 1987 287 302

[14] R. Kon. Competitive exclusion between year-classes in a semelparous biennial population. In Mathematical Modeling of Biological Systems, A. Deutsch, R. Bravo de la Parra, R. de Boer, O. Diekmann, P. Jagers, E. Kisdi, M. Kretzschmar, P. Lansky, H. Metz, eds., Vol. II, Birkhäuser, Boston, MA, 2008, 79–90.

[15] R. Kon, Y. Iwasa Single-class orbits in nonlinear Leslie matrix models for semelparous populations J. Math. Biol. 2007 781 802

[16] R. Kon, Y. Saito, Y. Takeuchi Permanence of single-species stage-structured models J. Math. Biol. 2004 515 528

[17] Y. Iwasa, S. Levin, V. Andreasen Aggregation in model ecosystems. II. Approximate Aggregation J. Math. Appl. Med. Biol. 1989 1 23

[18] M.A. Lewis, P.K. Maini, S.V. Petrovskii (Eds.). Dispersal, Individual Movement and Spatial Ecology: A Mathematical Perspective. Springer-Verlag, Berlin, Heidelberg, 2013.

[19] H. Lischke, T.J. Löffler, P.E. Thornton, N.E. Zimmermann. Up-scaling of biological properties and models to the landscape level. In: F. Kienast, S. Ghosh, O. Wildi (Eds.). A Changing World: Challenges for Landscape Research. Landscape Series 8, Springer Verlag, Berlin, 2007, 273–296.

[20] N.K. Luckyanov, Yu.M. Svirezhev, O.V. Voronkova Aggregation of variables in simulation models of water ecosystems Ecol. Model. 1983 235 240

[21] M.A. Mccarthy, C.J. Thompson, H.P. Possingham Theory for Designing Nature Reserves for Single Species Am. Nat. 2005 250 257

[22] M. Marvá, E. Sánchez, R. Bravo De La Parra, L. Sanz Reduction of slow-fast discrete models coupling migration and demography J. Theor. Biol. 2009 371 379

[23] L. Sanz, R. Bravo De La Parra, E. Sánchez Two time scales non-linear discrete models approximate reduction J. Differ. Equ. Appl. 2008 607 627

[24] D. Tilman, P. Kareiva. Spatial Ecology. Princeton University Press, Princeton, 1997.

[25] G.M. Viswanathan, M.G.E. da Luz, E.P. Raposo, H.E. Stanley. The Physics of Foraging: An Introduction to Random Searches and Biological Encounters. Cambridge University Press, Cambridge, 2011.

[26] H.H. Wei, F. Lutscher. From Individual Movement Rules to Population Level Patterns: The Case of Central-Place Foragers. In M.A. Lewis, P.K. Maini, S.V. Petrovskii (Eds.). Dispersal, Individual Movement and Spatial Ecology: A Mathematical Perspective. Springer-Verlag, Berlin, Heidelberg, 2013, 159–175.

Cité par Sources :