Voir la notice de l'article provenant de la source EDP Sciences
E.V. Grigorieva 1 ; E.N. Khailov 2 ; A. Korobeinikov 3, 4
@article{MMNP_2016_11_4_a6, author = {E.V. Grigorieva and E.N. Khailov and A. Korobeinikov}, title = {Optimal {Control} for a {SIR} {Epidemic} {Model} with {Nonlinear} {Incidence} {Rate}}, journal = {Mathematical modelling of natural phenomena}, pages = {89--104}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2016}, doi = {10.1051/mmnp/201611407}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611407/} }
TY - JOUR AU - E.V. Grigorieva AU - E.N. Khailov AU - A. Korobeinikov TI - Optimal Control for a SIR Epidemic Model with Nonlinear Incidence Rate JO - Mathematical modelling of natural phenomena PY - 2016 SP - 89 EP - 104 VL - 11 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611407/ DO - 10.1051/mmnp/201611407 LA - en ID - MMNP_2016_11_4_a6 ER -
%0 Journal Article %A E.V. Grigorieva %A E.N. Khailov %A A. Korobeinikov %T Optimal Control for a SIR Epidemic Model with Nonlinear Incidence Rate %J Mathematical modelling of natural phenomena %D 2016 %P 89-104 %V 11 %N 4 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611407/ %R 10.1051/mmnp/201611407 %G en %F MMNP_2016_11_4_a6
E.V. Grigorieva; E.N. Khailov; A. Korobeinikov. Optimal Control for a SIR Epidemic Model with Nonlinear Incidence Rate. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 4, pp. 89-104. doi : 10.1051/mmnp/201611407. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611407/
[1] Dynamic multidrug therapies for HIV: optimal and STI control approaches Math. Biosci. Eng. 2004 223 241
, , ,[2] S. Anita, V. Arnăutu, V. Capasso. Introduction to Optimal Control Problems in Life Sciences and Economics. Birkhäuser, USA, 2011.
[3] S. Butler, D. Kirschner, S. Lenhart. Optimal control of the chemotherapy affecting the infectivity of HIV, in Advances in Mathematical Population Dynamics - Molecules, Cells and Man, (Eds. O. Arino, D. Axelrod, and M. Kimmel), Vol. 6, World Scientific, Singapore, 1997, 557–569.
[4] Optimal HIV treatment by maximising immune response J. Math. Biol. 2004 545 562
, ,[5] B.P. Demidovich. Lectures on Stability Theory. Nauka, Moscow, 1967 (in Russian).
[6] A generalized estimate on the number of zeros for solutions of a class of linear differential equations SIAM J. Control Optim. 1992 1087 1091
[7] Optimizing chemotherapy in an HIV model Electronic Journal of Differential Equations 1998 1 12
, ,[8] Optimal control applied to vaccination and treatment strategies for various epidemiological models Math. Biosci. Eng. 2009 469 492
,[9] E. Grigorieva, N. Bondarenko, E. Khailov, A. Korobeinikov. Finite-dimensional methods for optimal control of autothermal thermophilic aerobic digestion, in Industrial Waste, (Eds. K.-Y. Show and X. Guo), InTech, Croatia, 2012, 91–120, ISBN: 978-953-51-0253-3. http://www.intechopen.com/articles/show/title/nite-dimensional-methods-for-optimal-controlof-waste-water-process
[10] Three-dimensional nonlinear optimal control model of wastewater biotreatment Neural, Parallel, and Scientific Computations 2012 23 36
, , ,[11] Analysis of optimal control problems for the process of wastewater biological treatment Revista de Matemática: Teoria y Aplicaciones 2013 103 118
, , ,[12] Optimal control for an epidemic in a population of varying size. Discret Contin. Dyn. S. 2015 549 561
, ,[13] Modeling and optimal control for antiretroviral therapy J. Biol. Syst. 2014 199 217
, , ,[14] Optimal control for a SIR infectious disease model Journal of Coupled Systems and Multiscale Dynamics 2013 324 331
, ,[15] An optimal control problem in HIV treatment Discret. Contin. Dyn. S. 2013 311 322
, ,[16] Parametrization of the attainable set for a nonlinear control model of a biochemical process Math. Biosci. Eng. 2013 1067 1094
, ,[17] Optimal control of an HIV immunology model Optim. Contr. Appl. Met. 2002 199 213
[18] Optimizing chemotherapy of HIV infection: scheduling, ammounts and initiation of treatment J. Math. Biol. 1997 775 792
, ,[19] Sulla teoria di Volterra della lotta per l'esistenza Gi. Inst. Ital. Attuari 1936 74 80
[20] Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission B. Math. Biol. 2006 615 626
[21] Global properties of infectious disease models with non-linear incidence B. Math. Biol. 2007 1871 1886
[22] Global asymptotic properties of virus dynamics models with dose dependent parasite reproduction and virulence, and nonlinear incidence rate Math. Med. Biol. 2009 225 239
[23] Stability of ecosystem: global properties of a general predator-prey model Math. Med. Biol. 2009 309 321
[24] Nonlinear incidence and stability of infectious disease models Math. Med. Biol. 2005 113 128
,[25] A. Korobeinikov, S.V. Petrovskii. Toward a general theory of ecosystem stability: plankton-nutrient interaction as a paradigm, in Aspects of Mathematical Modelling, (Eds. R.J. Hosking and E. Venturino), Birkhäuser, Basel, 2008, 27–40.
[26] J.J. Kutch, P. Gurfil. Optimal control of HIV infection with a continuously-mutating viral population, in Proceedings of American Control Conference, Anchorage, Alaska, 2002, 4033–4038.
[27] E.B. Lee, L. Marcus. Foundations of Optimal Control Theory. John Wiley Sons, New York, 1967.
[28] U Ledzewicz and H. Schättler, On optimal controls for a general mathematical model for chemotherapy of HIV, in Proceedings of American Control Conference, Anchorage, Alaska, 2002, 3454–3459.
[29] On optimal singular controls for a general SIR-model with vaccination and treatment Discret. Contin. Dyn. S. 2011 981 990
,[30] S. Lenhart, J.T. Workman. Optimal Control Applied to Biological Models. CRC Press, Taylor Francis Group, London, 2007.
[31] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mishchenko. Mathematical Theory of Optimal Processes. John Wiley Sons, New York, 1962.
[32] H. Schättler, U. Ledzewicz. Geometric Optimal Control: Theory, Methods and Examples. Springer, New York-Heidelberg-Dordrecht-London, 2012.
[33] Optimal control of innate immune response Optim. Contr. Appl. Met. 2002 91 104
, , ,[34] A.N. Tikhonov, A.B. Vasil'eva, A.G. Sveshnikov. Differential Equations. Springer, Berlin, 1985.
[35] Control of the medical treatment of AIDS Automat. Rem. Contr. 2006 493 511
,[36] A new fast optimal control for HIV-infection dynamics based on AVK method and fuzzy estimator American Journal of Scientific Research 2011 11 16
, , ,Cité par Sources :