Optimal Control for a SIR Epidemic Model with Nonlinear Incidence Rate
Mathematical modelling of natural phenomena, Tome 11 (2016) no. 4, pp. 89-104.

Voir la notice de l'article provenant de la source EDP Sciences

The goal of this paper is to explore the impact of non-linearity of functional responses on the optimal control of infectious diseases. In order to address this issue, we consider a problem of minimization of the level of infection at the terminal time for a controlled SIR model, where the incidence rate is given by a non-linear unspecified function f(S,I). In this model we consider four distinctive control policies: the vaccination of the newborn and the susceptible individuals, isolation of the infected individuals, and an indirect policy aimed at reduction of the transmission. The Pontryagin maximum principle is used for the problem analysis. In this problem we prove that the optimal controls are bang-bang functions. Then, the maximum possible number of switchings of these controls is found. Based on this, we describe the possible behavior of the optimal controls.
DOI : 10.1051/mmnp/201611407

E.V. Grigorieva 1 ; E.N. Khailov 2 ; A. Korobeinikov 3, 4

1 Department of Mathematics and Computer Sciences, Texas Woman's University Denton, TX 76204, USA
2 Faculty of Computational Mathematics and Cybernetics, Moscow State Lomonosov University Moscow, 119992, Russia
3 Centre de Recerca Matemática Campus de Bellaterra, Edifici C, 08193 Bellaterra, Barcelona, Spain
4 Departament de Matemátiques, Universitat Autónoma de Barcelona Campus de Bellaterra, Edifici C, 08193 Barcelona, Spain
@article{MMNP_2016_11_4_a6,
     author = {E.V. Grigorieva and E.N. Khailov and A. Korobeinikov},
     title = {Optimal {Control} for a {SIR} {Epidemic} {Model} with {Nonlinear} {Incidence} {Rate}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {89--104},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2016},
     doi = {10.1051/mmnp/201611407},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611407/}
}
TY  - JOUR
AU  - E.V. Grigorieva
AU  - E.N. Khailov
AU  - A. Korobeinikov
TI  - Optimal Control for a SIR Epidemic Model with Nonlinear Incidence Rate
JO  - Mathematical modelling of natural phenomena
PY  - 2016
SP  - 89
EP  - 104
VL  - 11
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611407/
DO  - 10.1051/mmnp/201611407
LA  - en
ID  - MMNP_2016_11_4_a6
ER  - 
%0 Journal Article
%A E.V. Grigorieva
%A E.N. Khailov
%A A. Korobeinikov
%T Optimal Control for a SIR Epidemic Model with Nonlinear Incidence Rate
%J Mathematical modelling of natural phenomena
%D 2016
%P 89-104
%V 11
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611407/
%R 10.1051/mmnp/201611407
%G en
%F MMNP_2016_11_4_a6
E.V. Grigorieva; E.N. Khailov; A. Korobeinikov. Optimal Control for a SIR Epidemic Model with Nonlinear Incidence Rate. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 4, pp. 89-104. doi : 10.1051/mmnp/201611407. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611407/

[1] B.M. Adams, H.T. Banks, H.D. Kwon, H.T. Tran Dynamic multidrug therapies for HIV: optimal and STI control approaches Math. Biosci. Eng. 2004 223 241

[2] S. Anita, V. Arnăutu, V. Capasso. Introduction to Optimal Control Problems in Life Sciences and Economics. Birkhäuser, USA, 2011.

[3] S. Butler, D. Kirschner, S. Lenhart. Optimal control of the chemotherapy affecting the infectivity of HIV, in Advances in Mathematical Population Dynamics - Molecules, Cells and Man, (Eds. O. Arino, D. Axelrod, and M. Kimmel), Vol. 6, World Scientific, Singapore, 1997, 557–569.

[4] R.V. Culshaw, S. Ruan, R.J. Spiteri Optimal HIV treatment by maximising immune response J. Math. Biol. 2004 545 562

[5] B.P. Demidovich. Lectures on Stability Theory. Nauka, Moscow, 1967 (in Russian).

[6] A.V. Dmitruk A generalized estimate on the number of zeros for solutions of a class of linear differential equations SIAM J. Control Optim. 1992 1087 1091

[7] K.R. Fister, S. Lenhart, J.S. Mcnally Optimizing chemotherapy in an HIV model Electronic Journal of Differential Equations 1998 1 12

[8] H. Gaff, E. Schaefer Optimal control applied to vaccination and treatment strategies for various epidemiological models Math. Biosci. Eng. 2009 469 492

[9] E. Grigorieva, N. Bondarenko, E. Khailov, A. Korobeinikov. Finite-dimensional methods for optimal control of autothermal thermophilic aerobic digestion, in Industrial Waste, (Eds. K.-Y. Show and X. Guo), InTech, Croatia, 2012, 91–120, ISBN: 978-953-51-0253-3. http://www.intechopen.com/articles/show/title/nite-dimensional-methods-for-optimal-controlof-waste-water-process

[10] E.V. Grigorieva, N.V. Bondarenko, E.N. Khailov, A. Korobeinikov Three-dimensional nonlinear optimal control model of wastewater biotreatment Neural, Parallel, and Scientific Computations 2012 23 36

[11] E.V. Grigorieva, N.V. Bondarenko, E.N. Khailov, A. Korobeinikov Analysis of optimal control problems for the process of wastewater biological treatment Revista de Matemática: Teoria y Aplicaciones 2013 103 118

[12] E.V. Grigorieva, E.N. Khailov, A. Korobeinikov Optimal control for an epidemic in a population of varying size. Discret Contin. Dyn. S. 2015 549 561

[13] E.V. Grigorieva, E.N. Khailov, N.V. Bondarenko, A. Korobeinikov Modeling and optimal control for antiretroviral therapy J. Biol. Syst. 2014 199 217

[14] E.V. Grigorieva, E.N. Khailov, A. Korobeinikov Optimal control for a SIR infectious disease model Journal of Coupled Systems and Multiscale Dynamics 2013 324 331

[15] E.V. Grigorieva, E.N. Khailov, A. Korobeinikov An optimal control problem in HIV treatment Discret. Contin. Dyn. S. 2013 311 322

[16] E.V. Grigorieva, E.N. Khailov, A. Korobeinikov Parametrization of the attainable set for a nonlinear control model of a biochemical process Math. Biosci. Eng. 2013 1067 1094

[17] H.R. Joshi Optimal control of an HIV immunology model Optim. Contr. Appl. Met. 2002 199 213

[18] D. Kirschner, S. Lenhart, S. Serbin Optimizing chemotherapy of HIV infection: scheduling, ammounts and initiation of treatment J. Math. Biol. 1997 775 792

[19] A. Kolmogorov Sulla teoria di Volterra della lotta per l'esistenza Gi. Inst. Ital. Attuari 1936 74 80

[20] A. Korobeinikov Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission B. Math. Biol. 2006 615 626

[21] A. Korobeinikov Global properties of infectious disease models with non-linear incidence B. Math. Biol. 2007 1871 1886

[22] A. Korobeinikov Global asymptotic properties of virus dynamics models with dose dependent parasite reproduction and virulence, and nonlinear incidence rate Math. Med. Biol. 2009 225 239

[23] A. Korobeinikov Stability of ecosystem: global properties of a general predator-prey model Math. Med. Biol. 2009 309 321

[24] A. Korobeinikov, P.K. Maini Nonlinear incidence and stability of infectious disease models Math. Med. Biol. 2005 113 128

[25] A. Korobeinikov, S.V. Petrovskii. Toward a general theory of ecosystem stability: plankton-nutrient interaction as a paradigm, in Aspects of Mathematical Modelling, (Eds. R.J. Hosking and E. Venturino), Birkhäuser, Basel, 2008, 27–40.

[26] J.J. Kutch, P. Gurfil. Optimal control of HIV infection with a continuously-mutating viral population, in Proceedings of American Control Conference, Anchorage, Alaska, 2002, 4033–4038.

[27] E.B. Lee, L. Marcus. Foundations of Optimal Control Theory. John Wiley Sons, New York, 1967.

[28] U Ledzewicz and H. Schättler, On optimal controls for a general mathematical model for chemotherapy of HIV, in Proceedings of American Control Conference, Anchorage, Alaska, 2002, 3454–3459.

[29] U. Ledzewicz, H. Schättler On optimal singular controls for a general SIR-model with vaccination and treatment Discret. Contin. Dyn. S. 2011 981 990

[30] S. Lenhart, J.T. Workman. Optimal Control Applied to Biological Models. CRC Press, Taylor Francis Group, London, 2007.

[31] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mishchenko. Mathematical Theory of Optimal Processes. John Wiley Sons, New York, 1962.

[32] H. Schättler, U. Ledzewicz. Geometric Optimal Control: Theory, Methods and Examples. Springer, New York-Heidelberg-Dordrecht-London, 2012.

[33] R.F. Stengel, R. Ghigliazza, N. Rulkarni, O. Laplace Optimal control of innate immune response Optim. Contr. Appl. Met. 2002 91 104

[34] A.N. Tikhonov, A.B. Vasil'eva, A.G. Sveshnikov. Differential Equations. Springer, Berlin, 1985.

[35] V.V. Velichenko, D.A. Pritykin Control of the medical treatment of AIDS Automat. Rem. Contr. 2006 493 511

[36] H.G. Zadeh, H.C. Nejad, M.M. Abadi, H.M. Sani A new fast optimal control for HIV-infection dynamics based on AVK method and fuzzy estimator American Journal of Scientific Research 2011 11 16

Cité par Sources :