Voir la notice de l'article provenant de la source EDP Sciences
I.Yu. Tyukin 1, 2 ; A.N. Gorban 1 ; T.A. Tyukina 1 ; J.M. Al-Ameri 1 ; Yu.A. Korablev 2
@article{MMNP_2016_11_4_a5, author = {I.Yu. Tyukin and A.N. Gorban and T.A. Tyukina and J.M. Al-Ameri and Yu.A. Korablev}, title = {Fast {Sampling} of {Evolving} {Systems} with {Periodic} {Trajectories}}, journal = {Mathematical modelling of natural phenomena}, pages = {73--88}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2016}, doi = {10.1051/mmnp/201611406}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611406/} }
TY - JOUR AU - I.Yu. Tyukin AU - A.N. Gorban AU - T.A. Tyukina AU - J.M. Al-Ameri AU - Yu.A. Korablev TI - Fast Sampling of Evolving Systems with Periodic Trajectories JO - Mathematical modelling of natural phenomena PY - 2016 SP - 73 EP - 88 VL - 11 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611406/ DO - 10.1051/mmnp/201611406 LA - en ID - MMNP_2016_11_4_a5 ER -
%0 Journal Article %A I.Yu. Tyukin %A A.N. Gorban %A T.A. Tyukina %A J.M. Al-Ameri %A Yu.A. Korablev %T Fast Sampling of Evolving Systems with Periodic Trajectories %J Mathematical modelling of natural phenomena %D 2016 %P 73-88 %V 11 %N 4 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611406/ %R 10.1051/mmnp/201611406 %G en %F MMNP_2016_11_4_a5
I.Yu. Tyukin; A.N. Gorban; T.A. Tyukina; J.M. Al-Ameri; Yu.A. Korablev. Fast Sampling of Evolving Systems with Periodic Trajectories. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 4, pp. 73-88. doi : 10.1051/mmnp/201611406. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611406/
[1] Dynamical state and parameter estimation SIAM J. Appl. Dyn. Sys. 2009 1341 1381
, , ,[2] When can we trust our model predictions? Unearthing structural sensitivity in biological systems Proc. R. Soc. 2013
,[3] Mutual interfeence between predators can give rise to turing spatial patterns Ecology 2002 28 34
, ,[4] Analysis of a predator-prey model with Holling II functional response concerning impulsive control strategy J. Comp. Appl. Math. 2006 347 362
, ,[5] Remarks on nonlinear adaptive observer design Syst. Contr. Lett. 2000 271 280
[6] Fitting ordinary differential equations to short time course data Phil. Trans. R. Soc. A 2008 519 544
, , , ,[7] On parameter and structural identifiabiliy: Nonunique observability/reconstructibility for identifiable systems, other ambiguities, and new definitions IEEE Trans. Automat. Cont. 1980 830 833
,[8] Observers for canonic models of neural oscillators Math. Model. Nat. Phen. 2010 146 184
, , ,[9] Adaptive observers for nonlinearly parameterized class of nonlinear systems Automatica 2009 2292 2299
, , ,[10] A.N. Gorban. Slow relaxations and bifurcations of omega-limit sets of dynamical systems. PhD thesis, Kuibyshev, Russia, 1980.
[11] Singularities of transition processes in dynamical systems: Qualitative theory of critical delays electron Electr. J. Diff. Eqns., Monograph 2004
[12] Parameter estimation and compensation in systems with nonlinearly parameterized perturbations Automatica 2010 19 28
, , ,[13] A quantitative description of membrane current and its application to conduction and excitation in nerve J. Physiol. 1952 500 544
,[14] E. Izhikevich. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press, 2007.
[15] Rigorous parameter reconstruction for differential equations with noisy data Automatica 2008 2422 2426
,[16] A real-time algorithm for moving horizon state and parameter estimation Comp. Chem. Eng. 2011 71 83
, , , ,[17] Uniform exponential stability of linear time-varying systems: revisited Syst. Contr. Lett. 2003 13 24
,[18] The existence and uniqueness of limit cycles in general predator-prey differential equations Chineese Sci. Bull. 1984 521 523
,[19] Global adaptive observers for nonlinear systems via filtered transformations IEEE Trans. Automat. Contr. 1992 1239 1245
,[20] On identifiability of nonlinear ode models and applications in viral dynamics SIAM Rev. 2011 3 39
, , ,[21] Voltage oscillations in the barnacle giant muscle fiber Biophys. J. 1981 193 213
,[22] A simplex method for function minimization Comp. J. 1965 308 313
,[23] Steady-state performance optimization for nonlinear control systems Automatica 2013 2087 2097
, , ,[24] I. Tyukin. Adaptation in Dynamical Systems. Cambridge Univ. Press, 2011.
[25] Adaptive observers and parameter estimation for a class of systems nonlinear in the parameters Automatica 2013 2409 2423
, , ,Cité par Sources :