Voir la notice de l'article provenant de la source EDP Sciences
G.A. ten Broeke 1 ; G.A.K. van Voorn 1 ; B.W. Kooi 2 ; J. Molenaar 1
@article{MMNP_2016_11_4_a4, author = {G.A. ten Broeke and G.A.K. van Voorn and B.W. Kooi and J. Molenaar}, title = {Detecting {Tipping} points in {Ecological} {Models} with {Sensitivity} {Analysis}}, journal = {Mathematical modelling of natural phenomena}, pages = {47--72}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2016}, doi = {10.1051/mmnp/201611405}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611405/} }
TY - JOUR AU - G.A. ten Broeke AU - G.A.K. van Voorn AU - B.W. Kooi AU - J. Molenaar TI - Detecting Tipping points in Ecological Models with Sensitivity Analysis JO - Mathematical modelling of natural phenomena PY - 2016 SP - 47 EP - 72 VL - 11 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611405/ DO - 10.1051/mmnp/201611405 LA - en ID - MMNP_2016_11_4_a4 ER -
%0 Journal Article %A G.A. ten Broeke %A G.A.K. van Voorn %A B.W. Kooi %A J. Molenaar %T Detecting Tipping points in Ecological Models with Sensitivity Analysis %J Mathematical modelling of natural phenomena %D 2016 %P 47-72 %V 11 %N 4 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611405/ %R 10.1051/mmnp/201611405 %G en %F MMNP_2016_11_4_a4
G.A. ten Broeke; G.A.K. van Voorn; B.W. Kooi; J. Molenaar. Detecting Tipping points in Ecological Models with Sensitivity Analysis. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 4, pp. 47-72. doi : 10.1051/mmnp/201611405. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611405/
[1] W. C. Allee. Animal aggregations, a study in general sociology. The University of Chicago Press, Chicago, Ill., 1931.
[2] A. D. Bazykin. Nonlinear Dynamics of Interacting Populations. World Scientific, Singapore, 1998.
[3] Early warning signals: the charted and uncharted territories Theor. Ecol. 2013 255 264
, ,[4] From screening to quantitative sensitivity analysis. A unified approach Comput. Phys. Commun. 978 988
, , 2011[5] The role of sensitivity analysis in ecological modelling Ecol. Model. 2007 167 182
, , ,[6] Key challenges in agent-based modelling for geo-spatial simulation Comput. Environ. Urban Syst. 2008 417 430
, ,[7] MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs TOMS 2003 141 164
, ,[8] E. J. Doedel, B. Oldeman. AUTO07P: Continuation and Bifurcation software for ordinary differential equations. Concordia University, Montreal, Canada, 2009.
[9] Sensitivity analysis of ordinary differential equation systems - a direct method Comput. Phys. 1976 123 143
,[10] Spatial agent-based models for socio-ecological systems: challenges and prospects Environ. Model. Softw. 2013 1 7
, , ,[11] Regime shifts, resilience, and biodiversity in ecosystem management Annu. Rev. Ecol. Evol. Syst. 2004 557 581
, , , , , ,[12] Estimating Sobol' sensitivity indices using correlations Environ. Model. Softw. 2012 157 166
,[13] J. Guckenheimer, P. Holmes. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, Berlin, 1985.
[14] A review of techniques for parameter sensitivity analysis of environmental models Environ. Monit. Assess. 1994 135 154
[15] Ten iterative steps in development and evaluation of environmental models Environ. Model. Softw. 2006 602 614
, ,[16] Analysis of variance designs for model output Comput. Phys. Commun. 1999 35 43
[17] The evidence for Allee effects Popul. Ecol. 2009 341 354
, , ,[18] Y. A. Kuznetsov. Elements of Applied Bifurcation Theory. Applied Mathematical Sciences 112, Springer-Verlag, New York, 2004.
[19] Social-ecological systems as complex adaptive systems: modeling and policy implications Environ. Dev. Econ. 2013 111 132
, , , , , , , , , , , , , , , ,[20] Variance-based sensitivity indices for models with dependent inputs Reliab. Eng. Syst. Safe. 2012 115 121
,[21] A. M. Mood, F. A. Graybill, D. C. Boes. Introduction to the Theory of Statistics, McGraw-Hill, Singapore 1974.
[22] Distributed Evaluation of Local Sensitivity Analysis (DELSA), with application to hydrologic models Water Resour. Res. 2014 409 426
, , , , ,[23] Sensitivity analysis of continuous-time models for ecological and evolutionary theories Theor. Ecol. 2015 481 490
, ,[24] A. Saltelli, S. Tarantola, F. Campolongo, M. Ratto. Sensitivity Analysis in Practice. A Guide to Assessing Scientific Models. John Wiley Sons, 2004.
[25] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, S. Tarantola. Global Sensitivity Analyisis: The Primer. John Wiley Sons, 2008.
[26] Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index Comput. Phys. Commun. 2010 259 270
, , , , ,[27] Catastrophic regime shifts in ecosystems: linking theory to observation Trends Ecol. Evol. 2003 648 656
,[28] Early-warning signals for critical transitions Nature 2009 53 59
, , , , , , , , ,[29] Ecological models supporting environmental decision making: a strategy for the future Trends Ecol. Evol. 2010 479 486
, , ,[30] New horizons for managing the environment: a review of coupled social-ecological systems modeling Nat. Resour. Model. 2012 219 272
, , , , , , , , , ,[31] R. Seydel. Practical Bifurcation and Stability Analysis, 3rd ed. Springer, New York/Dordrecht Heidelberg, London, 2010.
[32] Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates Math. Comput. Simul. 2001 271 280
[33] Derivative based global sensitivity measures and their link with global sensitivity indices Math. Comput. Simul. 2009 3009 3017
,[34] What is the Allee effect? Oikos 1999 185 190
, ,[35] Allee effects in biological invasions Ecol. Lett. 2005 895 908
,[36] Which sensitivity analysis method should I use for my Agent-based Model? JASSS 2016
, ,[37] Alternative attractors may boost uncertainty and sensitivity in ecological models Ecol. Model. 2003 117 124
,[38] Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee effect Math. Biosci. 2007 451 469
, , ,[39] Ecological consequences of global bifurcations in some food chain models Math. Biosci. 2010 120 133
, ,[40] Resilience, adaptability and transformability in social-ecological systems Ecol. Soc. 5 2004
, , ,[41] S. Wiggins. Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York, 1990.
Cité par Sources :