Mathematical Modelling of Metapopulation Dynamics: Revisiting its Meaning
Mathematical modelling of natural phenomena, Tome 11 (2016) no. 4, pp. 34-46.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, we revisit the metapopulation dynamics model of typical Levins type, and reconsider its mathematical modeling. For the metapopulation dynamics with three states for the patch of a habitat composed of a number patches available for the reproduction, ‘vacant', ‘small' (i.e., threatened to the extinction) and ‘large' (i.e., far from the extinction risk) in terms of population size in the patch, we reconstruct the mathematical model in a general form, making use of the difference in time scale between the state transition and the dispersal of individuals within the patchy habitat. The typical Levins type of metapopulation dynamics model appears only for a specific case with some additional assumptions for mathematical simplification. Especially we discuss the rationality of mass-action terms for the patch state transition in the Levins model, and find that such mass-action term could be rational for the modeling of metapopulation dynamics only in some ideal condition.
DOI : 10.1051/mmnp/201611404

H. Seno 1

1 Research Center for Pure and Applied Mathematics, Department of Computer and Mathematical Sciences, Graduate School of Information Sciences, Tohoku University, Japan
@article{MMNP_2016_11_4_a3,
     author = {H. Seno},
     title = {Mathematical {Modelling} of {Metapopulation} {Dynamics:} {Revisiting} its {Meaning}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {34--46},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2016},
     doi = {10.1051/mmnp/201611404},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611404/}
}
TY  - JOUR
AU  - H. Seno
TI  - Mathematical Modelling of Metapopulation Dynamics: Revisiting its Meaning
JO  - Mathematical modelling of natural phenomena
PY  - 2016
SP  - 34
EP  - 46
VL  - 11
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611404/
DO  - 10.1051/mmnp/201611404
LA  - en
ID  - MMNP_2016_11_4_a3
ER  - 
%0 Journal Article
%A H. Seno
%T Mathematical Modelling of Metapopulation Dynamics: Revisiting its Meaning
%J Mathematical modelling of natural phenomena
%D 2016
%P 34-46
%V 11
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611404/
%R 10.1051/mmnp/201611404
%G en
%F MMNP_2016_11_4_a3
H. Seno. Mathematical Modelling of Metapopulation Dynamics: Revisiting its Meaning. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 4, pp. 34-46. doi : 10.1051/mmnp/201611404. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611404/

[1] J.A.M. Borghans, R.J. De Boer, L.A. Segel Extending the quasi-steady state approximation by changing variables Bull. Math. Biol. 1996 43 63

[2] J.H. Brown, A. Kodric-Brown Turnover rate in insular biogeography: Effect of immigration on extinction Ecology 1977 445 449

[3] R.J. De Boer, A.S. Perelson Towards a general function describing T cell proliferation J. Theor. Biol. 1995 567 576

[4] R.S. Etienne Local populations of different sizes, mechanistic rescue effect and patch preference in the Levins metapopulation model Bull. Math. Biol. 2000 943 958

[5] R.S. Etienne A scrutiny of the Levins metapopulation model Comments on Theoretical Biology 2002 257 281

[6] M. Gyllenberg, I. Hanski Single-species metapopulation dynamics: A structured model Theor. Pop. Biol. 1992 35 61

[7] M. Gyllenberg, I. Hanski, A. Hastings. Structured metapopulation models. In I.A. Hanski and M.E. Gilpin (eds.), "Metapopulation biology: Ecology, genetics, and evolution", pp. 93–122, Academic Press, San Diego, CA, 1997.

[8] M. Gyllenberg, J.A.J. Metz On fitness in structured metapopulations J. Math. Biol. 2001 545 560

[9] I. Hanski Single-species spatial dynamics may contribute to long-term rarity and commonness Ecology 1985 335 343

[10] I. Hanski Single-species metapopulation dynamics: concepts, models and observations Biol. J. Linnean Soc. 1991 17 38

[11] I. Hanski. Metapopulation Ecology. Oxford Series in Ecology and Evolution, 324pp., Oxford University Press, New York, 1999.

[12] I. Hanski, M. Gilpin Metapopulation dynamics: brief history and conceptual domain Biol. J. Linnean Soc. 1991 3 16

[13] I. Hanski, M. Gyllenberg Two general metapopulation models and the core-satellite species hypothesis Am. Nat. 1993 17 41

[14] I. Hanski, D. Simberloff. The metapopulation approach: Its history, conceptual domain, and application to conservation. In I.A. Hanski and M.E. Gilpin (eds.), "Metapopulation biology: Ecology, genetics, and evolution", pp. 5–26, Academic Press, San Diego, CA, 1997.

[15] A. Hastings A metapopulation model with population jumps of varying sizes Math. Biosci. 1995 285 298

[16] G. Huisman, R.J. De Boer A formal derivation of the "Beddington" functional response J. Theor. Biol. 1997 389 400

[17] R. Levins Some demographic and genetic consequences of environmental heterogeneity for biological control Bull. Entomol. Soc. Am. 1969 237 240

[18] R. Levins. Extinction. In M. Gerstenhaber (ed.), "Some Mathematical Problems in Biology", Lectures on Mathematics in the Life Sciences, Vol. 2, pp. 75–107, American Mathematical Society, Providence, Rhode Island, 1970.

[19] R. Levins, D. Culver Regional coexistence of species and competition between rare species Proc. Nat. Acad. Sci 1971 1246 1248

[20] A.J. Lotka. Elements of Physical Biology. Williams and Wilkins, Baltimore, 1925.

[21] A.J. Lotka. Elements of Mathematical Biology. Dover, New York, 1956.

[22] M.G. Pedersen, A.M. Bersani, E. Bersani The total quasi-steady-state approximation for fully competitive enzyme reactions Bull. Math. Biol. 2007 433 457

[23] K.R. Schneider, T. Wilhelm Model reduction by extended quasi-steady-state approximation J. Math. Biol. 2000 443 450

[24] S. Schnell, M.J. Chappell, N.D. Evans, M.R. Roussel The mechanism distinguishablility problem in biochemical kinetics: The single-enzyme, single-substrate reaction as a case study C.R. Biologies 2006 51 61

[25] L.A. Segel, M. Slemrod The quasi steady-state assumption: A case study in perturbation SIAM Rev. 1989 446 477

[26] A.R. Tzafriri, E.R. Edelman The total quasi-steady-state approximation is valid for reversible enzyme kinetics J. Theor. Biol. 2004 303 313

[27] V. Volterra Variazione e fluttuazioni del numero d'individui in specie animali conviventi Mem. Acad. Lincei. 1926 30 113

Cité par Sources :