Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2016_11_4_a3, author = {H. Seno}, title = {Mathematical {Modelling} of {Metapopulation} {Dynamics:} {Revisiting} its {Meaning}}, journal = {Mathematical modelling of natural phenomena}, pages = {34--46}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2016}, doi = {10.1051/mmnp/201611404}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611404/} }
TY - JOUR AU - H. Seno TI - Mathematical Modelling of Metapopulation Dynamics: Revisiting its Meaning JO - Mathematical modelling of natural phenomena PY - 2016 SP - 34 EP - 46 VL - 11 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611404/ DO - 10.1051/mmnp/201611404 LA - en ID - MMNP_2016_11_4_a3 ER -
%0 Journal Article %A H. Seno %T Mathematical Modelling of Metapopulation Dynamics: Revisiting its Meaning %J Mathematical modelling of natural phenomena %D 2016 %P 34-46 %V 11 %N 4 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611404/ %R 10.1051/mmnp/201611404 %G en %F MMNP_2016_11_4_a3
H. Seno. Mathematical Modelling of Metapopulation Dynamics: Revisiting its Meaning. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 4, pp. 34-46. doi : 10.1051/mmnp/201611404. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611404/
[1] Extending the quasi-steady state approximation by changing variables Bull. Math. Biol. 1996 43 63
, ,[2] Turnover rate in insular biogeography: Effect of immigration on extinction Ecology 1977 445 449
,[3] Towards a general function describing T cell proliferation J. Theor. Biol. 1995 567 576
,[4] Local populations of different sizes, mechanistic rescue effect and patch preference in the Levins metapopulation model Bull. Math. Biol. 2000 943 958
[5] A scrutiny of the Levins metapopulation model Comments on Theoretical Biology 2002 257 281
[6] Single-species metapopulation dynamics: A structured model Theor. Pop. Biol. 1992 35 61
,[7] M. Gyllenberg, I. Hanski, A. Hastings. Structured metapopulation models. In I.A. Hanski and M.E. Gilpin (eds.), "Metapopulation biology: Ecology, genetics, and evolution", pp. 93–122, Academic Press, San Diego, CA, 1997.
[8] On fitness in structured metapopulations J. Math. Biol. 2001 545 560
,[9] Single-species spatial dynamics may contribute to long-term rarity and commonness Ecology 1985 335 343
[10] Single-species metapopulation dynamics: concepts, models and observations Biol. J. Linnean Soc. 1991 17 38
[11] I. Hanski. Metapopulation Ecology. Oxford Series in Ecology and Evolution, 324pp., Oxford University Press, New York, 1999.
[12] Metapopulation dynamics: brief history and conceptual domain Biol. J. Linnean Soc. 1991 3 16
,[13] Two general metapopulation models and the core-satellite species hypothesis Am. Nat. 1993 17 41
,[14] I. Hanski, D. Simberloff. The metapopulation approach: Its history, conceptual domain, and application to conservation. In I.A. Hanski and M.E. Gilpin (eds.), "Metapopulation biology: Ecology, genetics, and evolution", pp. 5–26, Academic Press, San Diego, CA, 1997.
[15] A metapopulation model with population jumps of varying sizes Math. Biosci. 1995 285 298
[16] A formal derivation of the "Beddington" functional response J. Theor. Biol. 1997 389 400
,[17] Some demographic and genetic consequences of environmental heterogeneity for biological control Bull. Entomol. Soc. Am. 1969 237 240
[18] R. Levins. Extinction. In M. Gerstenhaber (ed.), "Some Mathematical Problems in Biology", Lectures on Mathematics in the Life Sciences, Vol. 2, pp. 75–107, American Mathematical Society, Providence, Rhode Island, 1970.
[19] Regional coexistence of species and competition between rare species Proc. Nat. Acad. Sci 1971 1246 1248
,[20] A.J. Lotka. Elements of Physical Biology. Williams and Wilkins, Baltimore, 1925.
[21] A.J. Lotka. Elements of Mathematical Biology. Dover, New York, 1956.
[22] The total quasi-steady-state approximation for fully competitive enzyme reactions Bull. Math. Biol. 2007 433 457
, ,[23] Model reduction by extended quasi-steady-state approximation J. Math. Biol. 2000 443 450
,[24] The mechanism distinguishablility problem in biochemical kinetics: The single-enzyme, single-substrate reaction as a case study C.R. Biologies 2006 51 61
, , ,[25] The quasi steady-state assumption: A case study in perturbation SIAM Rev. 1989 446 477
,[26] The total quasi-steady-state approximation is valid for reversible enzyme kinetics J. Theor. Biol. 2004 303 313
,[27] Variazione e fluttuazioni del numero d'individui in specie animali conviventi Mem. Acad. Lincei. 1926 30 113
Cité par Sources :