Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2016_11_4_a2, author = {H.I. Egilmez and A.Yu. Morozov}, title = {Tri-trophic {Plankton} {Models} {Revised:} {Importance} of {Space,} {Food} {Web} {Structure} and {Functional} {Response} {Parametrisation}}, journal = {Mathematical modelling of natural phenomena}, pages = {16--33}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2016}, doi = {10.1051/mmnp/201611403}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611403/} }
TY - JOUR AU - H.I. Egilmez AU - A.Yu. Morozov TI - Tri-trophic Plankton Models Revised: Importance of Space, Food Web Structure and Functional Response Parametrisation JO - Mathematical modelling of natural phenomena PY - 2016 SP - 16 EP - 33 VL - 11 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611403/ DO - 10.1051/mmnp/201611403 LA - en ID - MMNP_2016_11_4_a2 ER -
%0 Journal Article %A H.I. Egilmez %A A.Yu. Morozov %T Tri-trophic Plankton Models Revised: Importance of Space, Food Web Structure and Functional Response Parametrisation %J Mathematical modelling of natural phenomena %D 2016 %P 16-33 %V 11 %N 4 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611403/ %R 10.1051/mmnp/201611403 %G en %F MMNP_2016_11_4_a2
H.I. Egilmez; A.Yu. Morozov. Tri-trophic Plankton Models Revised: Importance of Space, Food Web Structure and Functional Response Parametrisation. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 4, pp. 16-33. doi : 10.1051/mmnp/201611403. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611403/
[1] When can we trust our model predictions? Unearthing structural sensitivity in biological systems Proc. R. Soc. A 2012
,[2] Invulnerable prey and the paradox of enrichment Ecology 1996 1125 1133
,[3] Beneath the surface: characteristics of oceanic ecosystems under weak mixing conditions - a theoretical investigation Prog. Oceanogr. 2007 771 796
,[4] The effect of grazing-mediated DMS production on the behaviour of the copepod Calanus helgolandicus Mar. Drugs 2013 2486 2500
, , ,[5] Environmental factors controlling phytoplankton processes in the Southern Ocean J. Phycol. 2002 844 861
[6] Grazing patterns of copepods in the upwelling system off Peru Limnol. Oceanogr. 1980 583 596
, ,[7] The feeding ecology of the copepod Centropages typicus (Kroyer) Prog. Oceanogr. 2007 137 150
, ,[8] Moulting and mortality rates of copepods related to age within stage: Experimental results Mar. Ecol. Prog. Ser. 1992 235 243
,[9] Phytoplankton taxa in relation to primary production in the equatorial Pacific Deep Sea Res. 1990 1733 1752
, ,[10] Type-3 functional response in limnetic suspension-feeders, as demonstrated by in situ grazing rates Hydrobiologia 1992 175 191
,[11] Structural sensitivity of biological models revisited J. Theor. Biol. 2011 82 91
, , , ,[12] F. Courchamp, L. Berec, J. Gascoigne. Allee Effects in Ecology and Conservation. Oxford Uni. Press, Oxford, 2006.
[13] Photosynthetic characteristics and estimated growth rates indicate that grazing is the proximate control of primary production in the equatorial Pacific J. Geophys. Res. 1992 639 654
, , ,[14] Allee effect: population growth, critical density, and chance of extinction Nat. Resour. Model. 1989 481 538
[15] Effects of temperature and food abundance on grazing and short-term weight change in the marine copepod Acartia hudsonica Limnol. Oceanogr. 1996 361 378
,[16] Zooplankton mortality and the dynamical behaviour of plankton population models Bull. Math. Biol. 1999 303 339
,[17] Modeling microzooplankton and macrozooplankton dynamics within a coastal upwelling system J. Plankton Res. 2000a 1619 1648
, ,[18] The stability of an NPZ model subject to realistic levels of vertical mixing J. Mar. Res. 2000b 37 60
, ,[19] The role of higher predation in plankton population models J. Plankton Res. 2000 1085 1112
,[20] Light and growth in marine phytoplankton: Allometric, taxonomic, and environmental variation Limnol. Oceanogr. 2015 540 552
, , ,[21] Revisiting the stability of spatially heterogeneous predator-prey systems under eutrophication Bull. Math. Biol. 2015 1886 1908
, , ,[22] Grazing control of phytoplankton stock in the open subarctic Pacific Ocean: a model assessing the role of mesozooplankton, particularly the large calanoid copepods Neocalanus spp Mar. Ecol. Prog. Ser. 1987 49 68
[23] Community response to enrichment is highly sensitive to model structure Biol. Lett. 2005 9 12
,[24] Modelling the production of dimethylsulfide during a phytoplankton bloom J. Geophys. Res. 1993 22805 22816
, , ,[25] Unpalatable prey resolves the paradox of enrichment P. Roy. Soc. Lond. B. Bio. 1999 1215 1219
,[26] Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics Deep-sea Res. Pt. II 2003 2847 2875
, , , ,[27] Top-down impact by copepods on ciliate numbers and persistence depends on copepod and ciliate species composition J. Plankton Res. 2006 499 507
[28] Prey switching by Acartia clausi: experimental evidence and implications of intraguild predation assessed by a model Mar. Ecol. Prog. Ser. 1997 247 259
,[29] Zooplankton grazing and growth: Scaling within the 2-2000 μm body size range Limnol. Oceanogr. 1997 687 704
, ,[30] Phaeocystis blooming enhanced by copepod predation on protozoa: evidence from incubation experiments Mar. Ecol. Prog. Ser. 1993 51 57
, ,[31] Paradoxes or theoretical failures? The jury is still out Ecol. Model. 2005 3 14
,[32] A. Kharab, R. B. Guenther. An Introduction to Numerical Methods: A MATLAB Approach. Third edition. CRC Press, Boca Raton, 2012.
[33] Prey switching behaviour in the planktonic copepod Acartia tonsa Mar. Ecol. Prog. Ser. 1996 65 75
, ,[34] Vertical distribution of zooplankton: density dependence and evidence for an ideal free distribution with costs BMC Biol. 2005 10
[35] Multitrophic interactions in the sea: assessing the effect of infochemical-mediated foraging in a 1-d spatial model MMNP 2013 25 44
, , , ,[36] Testing the paradox of enrichment along a land use gradient in a multitrophic aboveground and belowground community PLoS ONE 2012 e49034
, , , , ,[37] Top-down control in a patchy environment: Revisiting the stabilizing role of food-dependent predator dispersal Theor. Popul. Biol. 2012 9 19
, ,[38] A. Yu. Morozov. Incorporating complex foraging of zooplankton in models: role of micro and mesoscale processes in macroscale patterns. In Dispersal, individual movement and spatial ecology: a mathematical perspective (eds M Lewis, P Maini S Petrovskii), pp. 1–10. New York, NY: Springer, 2011.
[39] Nutrient-rich plankton communities stabilized via predator-prey interactions: revisiting the role of vertical heterogeneity Math. Med. Biol. 2011 185 215
, , ,[40] Revisiting the role of individual variability in population persistence and stability PLoS ONE 2013 e70576
, ,[41] Feeding on multiple sources: towards a universal parameterization of the functional response of a generalist predator allowing for switching PLoS ONE 2013 e74586
,[42] A resolution of the paradox of enrichment J. Theor. Biol. 2007 194 201
,[43] The functional response of predators J. Appl. Ecol. 1973 335 342
[44] Transition to spatiotemporal chaos can resolve the paradox of enrichment Ecol. Complex 2004 37 47
, ,[45] Intraguild predation: the dynamics of complex trophic interactions Trends. Ecol. Evol. 1992 151 155
,[46] J.E.G. Raymont. Plankton and Productivity in the Oceans. Phytoplankton, Vol. 1 Pergamon. Oxford (1980)
[47] Vertical distribution and composition of phytoplankton under the influence of an upper mixed layer J. Theor. Biol. 2010 120 133
, ,[48] Imperfect prey selectivity of predators promotes biodiversity and irregularity in food webs Ecol. Letts. 2015 1262 1269
, ,[49] Paradox of enrichment: destabilization of exploitation ecosystems in ecological time Science 1971 385 387
[50] Graphical representation and stability conditions of predator-prey interactions Am. Nat. 1963 209 223
,[51] The stability of ecosystems: a brief overview of the paradox of enrichment J. Bioscience 2007 421 428
,[52] Consequences of the Allee effect for behaviour, ecology and conservation Trends. Ecol. Evol. 1999 401 405
,[53] Predation on Protozoa: its importance to zooplankton J. Plankton Res. 1990 891 908
,[54] Trophic modification of food quality by heterotrophic protists: species-specific effects on copepod egg production and egg hatching J. Exp. Mar. Biol. Ecol. 2005 85 98
,[55] Foraging behaviour of six calanoid copepods: observations and hydrodynamic analysis Mar. Ecol. Prog. Ser. 1990 23 33
,[56] Maximal feeding with active preyswitching: A kill-the-winner functional response and its effect on global diversity and biogeography Prog. Oceanogr. 2014 93 109
, , ,[57] Swimming behaviour of developmental stages of the calanoid copepod Temora longicornis at different food concentrations Mar. Ecol. Prog. Ser. 1995 153 161
,Cité par Sources :