The Impact of Fragmented Habitat’s Size and Shape on Populations with Allee Effect
Mathematical modelling of natural phenomena, Tome 11 (2016) no. 4, pp. 5-15.

Voir la notice de l'article provenant de la source EDP Sciences

This study aims to explore the ways in which population dynamics are affected by the shape and size of fragmented habitats. Habitat fragmentation has become a key concern in ecology over the past 20 years as it is thought to increase the threat of extinction for a number of plant and animal species; particularly those close to the fragment edge. In this study, we consider this issue using mathematical modelling and computer simulations in several domains of various shape and with different strength of the Allee effect. A two-dimensional reaction-diffusion equation (taking the Allee effect into account) is used as a model. Extensive simulations are performed in order to determine how the boundaries impact the population persistence. Our results indicate the following: (i) for domains of simple shape (e.g. rectangle), the effect of the critical patch size (amplified by the Allee effect) is similar to what is observed in 1D space, in particular, the likelihood of population survival is determined by the interplay between the domain size and thee strength of the Allee effect; (ii) in domains of complicated shape, for the population to survive, the domain area needs to be larger than the area of the corresponding rectangle. Hence, it can be concluded that domain size and shape both have crucial effect on population survival.
DOI : 10.1051/mmnp/201611402

W.G. Alharbi 1 ; S.V. Petrovskii 1

1 Department of Mathematics, University of Leicester, University Road, Leicester LE1 7RH, UK
@article{MMNP_2016_11_4_a1,
     author = {W.G. Alharbi and S.V. Petrovskii},
     title = {The {Impact} of {Fragmented} {Habitat{\textquoteright}s} {Size} and {Shape} on {Populations} with {Allee} {Effect}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {5--15},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2016},
     doi = {10.1051/mmnp/201611402},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611402/}
}
TY  - JOUR
AU  - W.G. Alharbi
AU  - S.V. Petrovskii
TI  - The Impact of Fragmented Habitat’s Size and Shape on Populations with Allee Effect
JO  - Mathematical modelling of natural phenomena
PY  - 2016
SP  - 5
EP  - 15
VL  - 11
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611402/
DO  - 10.1051/mmnp/201611402
LA  - en
ID  - MMNP_2016_11_4_a1
ER  - 
%0 Journal Article
%A W.G. Alharbi
%A S.V. Petrovskii
%T The Impact of Fragmented Habitat’s Size and Shape on Populations with Allee Effect
%J Mathematical modelling of natural phenomena
%D 2016
%P 5-15
%V 11
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611402/
%R 10.1051/mmnp/201611402
%G en
%F MMNP_2016_11_4_a1
W.G. Alharbi; S.V. Petrovskii. The Impact of Fragmented Habitat’s Size and Shape on Populations with Allee Effect. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 4, pp. 5-15. doi : 10.1051/mmnp/201611402. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611402/

[1] M.W. Adamson, A. Y. Morozov When can we trust our model predictions? Unearthing structural sensitivity in biological systems Proc. R. Soc. A. The Royal Society 2012

[2] J. Benitez-Malvido, V. Arroyo-Rodriguez. Habitat fragmentation, edge effects and biological corridors in tropical ecosystems. Encyclopaedia of Life Support Systems (EOLSS), Oxford: Eolss Publishers, (2008), 1–11.

[3] M. Bevers, C. H. Flather Numerically exploring habitat fragmentation effects on populations using cell-based coupled map lattices Theor. Popul. Biol. 1999 61 76

[4] P. Cheptou, V. Avendano, G. Lyz Pollination processes and the Allee effect in highly fragmented populations: consequences for the mating system in urban environments New Phytol. 2006 774 783

[5] S. K. Collinge Ecological consequences of habitat fragmentation: implications for landscape architecture and planning Landsc. Urban Plan. 1996 59 77

[6] F. Courchamp, T. Clutton-Brock, B. Grenfell Inverse density dependence and the Allee effect Trends Ecol. Evol. 1999 405 410

[7] J. Crank. The Mathematics of Diffusion. Oxford University Press, 1979.

[8] B. Dennis Allee effects: population growth, critical density, and the chance of extinction Nat. Resour. Model. 1989 481 538

[9] J. B. Dunning, B. J. Danielson, H. R. Pulliam Ecological Processes that Affect Populations in Complex Landscapes Oikos 1992 169 175

[10] L. Edelstein-Keshet Mathematical Models in Biology SIAM 1988

[11] R. M. Ewers, R. K. Didham Confounding factors in the detection of species responses to habitat fragmentation Biol. Rev. 2006 117 142

[12] L. Fahrig Effects of habitat fragmentation on biodiversity Annu. Rev. Ecol. Evol. Syst. 2003 487 515

[13] J. Fischer, D.B. Lindenmayer Landscape modification and habitat fragmentation: a synthesis Glob. Ecol. Biogeogr. 2007 265 280

[14] C. Flora, N. David, G. Mathias, A. Morozov, P. Jean-Christophe Structural sensitivity of biological models revisited J. Theor. Biol. 2011 82 91

[15] G.F. Fussmann, B. Blasius Community response to enrichment is highly sensitive to model structure Biol. Lett. 2005 9 12

[16] D. Goodman Consideration of stochastic demography in the design and management of biological reserves Nat. Resour. Model. 1987a 205 234

[17] I. Hanksi, M. Gilpin Metapopulation dynamics: brief history and conceptual domain Biol. J. Linn. Soc. 1991 3 16

[18] M. Jankovic, S. Petrovskii Are time delays always destabilizing? Revisiting the role of time delays and the Allee effect Theor. Ecol. 2014 335 349

[19] H. Kierstead, L.B. Slobodkin The size of water masses containing plankton blooms J. mar. Res. 1953 141 147

[20] R. V. Kirk, M. A. Lewis Edge permeability and population persistence in isolated habitat patches Nat. Resour. Model. 1999 37 64

[21] M. Kot. Elements of Mathematical Ecology. Cambridge University Press, 2001.

[22] W. Kunin, Y. Iwasa Pollinator foraging strategies in mixed floral arrays: density effects and floral constancy Theor. Popul. Biol. 1996 232 263

[23] B. B. Lamont, P. G. Klinkhamer, E. Witkowski Population fragmentation may reduce fertility to zero in Banksia goodiia: demonstration of the Allee effect Oecologia 1993 446 450

[24] R. Lande Risks of population extinction from demographic and environmental stochasticity and random catastrophes Am. Nat. 1993 911 927

[25] R. Lande Extinction thresholds in demographic models of territorial populations Am. Nat. 1987 624 635

[26] J. G. Skellam Random dispersal in theoretical populations Biometrika 1951 196 218

[27] W. F. Laurance, E. Yensen Predicting the impacts of edge effects in fragmented habitats Biol. Conserv. 1991 77 92

[28] M. Lewis, P. Kareiva Allee dynamics and the spread of invading organisms Theor. Popul. Biol. 1993 141 158

[29] A.Y. Morozov, B.L. Li On the importance of dimensionality of space in models of space-mediated population persistence Theor. Popul. Biol. 2007 278 289

[30] D. Moser, H. G. Zechmeister, C. Plutzar, N. Sauberer, T. Wrbka, G. Grabherr Landscape patch shape complexity as an effective measure for plant species richness in rural landscapes Landsc. Ecol. 2002 657 669

[31] J. Murray. Mathematical Biology. Springer, 2002.

[32] S. V. Petrovskii and B. Li. Exactly Solvable Models of Biological Invasion. CRC Press, 2005.

[33] S. V. Petrovskii, B. Li An exactly solvable model of population dynamics with density-dependent migrations and the Allee effect Math. Biosci. 2003 79 91

[34] B. J. Rathcke Habitat fragmentation and plant pollinator Curr. Sci. 1993 273 277

[35] N. Richter-Dyn, N. S. Goel On the extinction of a colonizing species Theor. Popul. Biol. 1972 406 433

[36] L. Ries, T. D. Sisk A predictive model of edge effects Ecology 2004 2917 2926

[37] D. W. Schemske, B. C. Husband, M. H. Ruckelshaus, C. Goodwillie, I. M. Parker, J. G. Bishop Evaluating approaches to the conservation of rare and endangered plants Ecology 1994 584 606

[38] C. Thies, T. Tscharntke Landscape structure and biological control in agroecosystems Science 1999 893 895

[39] V. Volpert, S. Petrovskii Reaction-diffusion waves in biology Phys. Life. Rev. 2009 267 310

Cité par Sources :