Modelling in Ecology, Epidemiology and Ecoepidemiology: Introduction to the Special Issue
Mathematical modelling of natural phenomena, Tome 11 (2016) no. 4, pp. 1-4.

Voir la notice de l'article provenant de la source EDP Sciences

DOI : 10.1051/mmnp/201611401

A. Morozov 1, 2 ; S. Petrovskii 1

1 Department of Mathematics, University of Leicester, Leicester, LE1 7RH, UK
2 Shirshov Institute of Oceanology, Moscow, 117997, Russia
@article{MMNP_2016_11_4_a0,
     author = {A. Morozov and S. Petrovskii},
     title = {Modelling in {Ecology,} {Epidemiology} and {Ecoepidemiology:} {Introduction} to the {Special} {Issue}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {1--4},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2016},
     doi = {10.1051/mmnp/201611401},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611401/}
}
TY  - JOUR
AU  - A. Morozov
AU  - S. Petrovskii
TI  - Modelling in Ecology, Epidemiology and Ecoepidemiology: Introduction to the Special Issue
JO  - Mathematical modelling of natural phenomena
PY  - 2016
SP  - 1
EP  - 4
VL  - 11
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611401/
DO  - 10.1051/mmnp/201611401
LA  - en
ID  - MMNP_2016_11_4_a0
ER  - 
%0 Journal Article
%A A. Morozov
%A S. Petrovskii
%T Modelling in Ecology, Epidemiology and Ecoepidemiology: Introduction to the Special Issue
%J Mathematical modelling of natural phenomena
%D 2016
%P 1-4
%V 11
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611401/
%R 10.1051/mmnp/201611401
%G en
%F MMNP_2016_11_4_a0
A. Morozov; S. Petrovskii. Modelling in Ecology, Epidemiology and Ecoepidemiology: Introduction to the Special Issue. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 4, pp. 1-4. doi : 10.1051/mmnp/201611401. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611401/

[1] M.W. Adamson, A. Y. Morozov When can we trust our model predictions? Unearthing structural sensitivity in biological systems Proc. R. Soc. A. 2012

[2] W. G. Alharbi, S. V. Petrovskii The impact of fragmented habitat’s size and shape on populations with Allee effect Math. Mod. Nat. Phen. 2016 5 16

[3] P. Auger, R. Bravo De La Parra, J.-C. Poggiale, E. Sanchez, L. Sanz Aggregation methods in dynamical systems and applications in population and community dynamics Phys. Life. Rev. 2008 79 105

[4] R. Bravo De La Parra, M. Marva, F. Sansegundo Fast dispersal in semelparous populations Math. Mod. Nat. Phen. 2016 121 135

[5] H. I. Egilmez, A. Yu. Morozov Tri-trophic plankton models revised: importance of space, food web structure and functional response parametrisation Math. Mod. Nat. Phen. 2016 17 34

[6] I. Hanski Single-species spatial dynamics may contribute to long-term rarity and commonness Ecology 1985 335 343

[7] E.V. Grigorieva, E.N. Khailov, A. Korobeinikov Optimal control for a SIR epidemic model with nonlinear incidence rate Math. Mod. Nat. Phen. 2016 90 105

[8] J.Z. Farkas, A. Yu. Morozov, E.G. Arashkevich, A. Nikishina Revisiting the stability of spatially heterogeneous predatorprey systems under eutrophication Bull. Math. Biol. 2015 1886 1908

[9] V. Hutson, S. Martinez, K. Mischaikow, G. T. Vickers The evolution of dispersal J. Math. Biol. 2003 483 517

[10] S.E. Kingsland. Modeling nature: Episodes in the history of population ecology. 2d ed. Chicago: Univ. of Chicago Press, 1995.

[11] R. Levins Some demographic and genetic consequences of environmental heterogeneity for biological control Bull. Entomol. Soc. Am. 1969 237 240

[12] M.A. Lewis, S.V. Petrovskii, J. Potts. The Mathematics Behind Biological Invasions. Interdisciplinary Applied Mathematics, Vol. 44. Springer, 2016.

[13] C. Li, X. Liao The impact of hybrid quarantine strategies and delay factor on viral prevalence in computer networks Math. Mod. Nat. Phen. 2016 106 120

[14] J. Maynard Smith. Models in Ecology. Cambridge Univ. Press, 1974.

[15] C. Morris, H. Lecar Voltage oscillations in the barnacle giant muscle fiber Biophys. J. 1981 193 213

[16] A. Yu. Morozov, J.C. Poggiale From spatially explicit ecological models to mean-field dynamics: The state of the art and perspectives Ecol. Compl. 2012 1 11

[17] A. Moussaoui, P. Auger Effects of fast Hawk-Dove-Bully game on the dynamics of a stage-structured population Math. Mod. Nat. Phen. 2016 136 154

[18] S.V. Petrovskii, R.P. Blackshaw, B.-L. Li Persistence of structured populations with and without the Allee effect under adverse environmental conditions Bull. Math. Biol. 2008 412 437

[19] S.V. Petrovskii, R.P. Blackshaw Behaviourally structured populations persist longer under harsh environmental conditions Ecol. Lett. 2003 455 462

[20] B. Perthame, P. E. Souganidis Rare mutations limit of a steady state dispersal evolution model Math. Mod. Nat. Phen. 2016 155 167

[21] J. Ren, Y. Xu, J. Liu Investigation of dynamics of a virus-antivirus model in complex network Physica A 2015 533 540

[22] O. Ronce How does it feel to be like a rolling stone? Ten questions about dispersal evolution Annu. Rev. Ecol. Evol. Syst. 2007 231 253

[23] G.A. Ten Broeke, G.A.K. Van Voorn, B.W. Kooi, J. Molenaar Detecting tipping points in ecological models with sensitivity analysis Math. Mod. Nat. Phen. 2016 48 73

[24] H. Seno Mathematical modelling of metapopulation dynamics: Revisiting its meaning Math. Mod. Nat. Phen. 2016 35 47

[25] I. Yu. Tyukin, A.N. Gorban, T.A. Tyukina, J. Mohammed Al-Ameri, Yu. A. Korablev Fast sampling of evolving systems with periodic trajectories Math. Mod. Nat. Phen. 2016 74 89

[26] I. Yu. Tyukin. Adaptation in Dynamical Systems. Cambridge Univ. Press, 2011.

[27] F. Wang, Y. Zhang, C. Wang, J. Ma, S.J. Moon Stability analysis of a SEIQV epidemic model for rapid spreading worms Comput. Secur. 2010 410 418

Cité par Sources :