A Non-Linear Model for Solute Transport, Accounting for Sub-diffusive Concentration Decline and Sorption Saturation
Mathematical modelling of natural phenomena, Tome 11 (2016) no. 3, pp. 179-190.

Voir la notice de l'article provenant de la source EDP Sciences

Solute transport in porous media is very often complicated by solute immobilization on a solid matrix of porous media. Usually, immobilization is accounted by the mobile/immobile media approach (MIM). However, solute immobilization is very complicated phenomena with a variety of specific features. Therefore, in the literature there have been a lot of specific MIM-type models. Usually each model is constructed for to account one specific feature. Examples are the power decline of concentration in the large time limit at small concentration and the limitation of the immobilization process at high concentrations. Both effects have been evidenced by experiments. The present paper develops a hybrid nonlinear fractional MIM model potentially able to describe the above two features. A step-by-step process of constructing the nonlinear fractional MIM model is presented, and the main properties of the new model are discussed. Two limiting cases describe power law decline and sorption saturation have predicted by the new model equations. Numerical simulations illustrate limiting cases and the capabilities of new nonlinear fractional model.
DOI : 10.1051/mmnp/201611311

B. Maryshev 1

1 Institute of Continuous Media Mechanics Ural Branch of Russian Academy of Science, Perm, Russia Perm State University, Perm, Russia
@article{MMNP_2016_11_3_a10,
     author = {B. Maryshev},
     title = {A {Non-Linear} {Model} for {Solute} {Transport,} {Accounting} for {Sub-diffusive} {Concentration} {Decline} and {Sorption} {Saturation}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {179--190},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2016},
     doi = {10.1051/mmnp/201611311},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611311/}
}
TY  - JOUR
AU  - B. Maryshev
TI  - A Non-Linear Model for Solute Transport, Accounting for Sub-diffusive Concentration Decline and Sorption Saturation
JO  - Mathematical modelling of natural phenomena
PY  - 2016
SP  - 179
EP  - 190
VL  - 11
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611311/
DO  - 10.1051/mmnp/201611311
LA  - en
ID  - MMNP_2016_11_3_a10
ER  - 
%0 Journal Article
%A B. Maryshev
%T A Non-Linear Model for Solute Transport, Accounting for Sub-diffusive Concentration Decline and Sorption Saturation
%J Mathematical modelling of natural phenomena
%D 2016
%P 179-190
%V 11
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611311/
%R 10.1051/mmnp/201611311
%G en
%F MMNP_2016_11_3_a10
B. Maryshev. A Non-Linear Model for Solute Transport, Accounting for Sub-diffusive Concentration Decline and Sorption Saturation. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 3, pp. 179-190. doi : 10.1051/mmnp/201611311. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611311/

[1] L. Lapidus, N. R. Amundson Mathematics of Adsorption in Beds. VI. The Effect of Longitudinal Diffusion in Ion Exchange and Chromatographic Columns J Phys. Chem. 1952 984 988

[2] D. A. Nield, A. Bejan. Convection in Porous Media, Springer, New York, 2006.

[3] B. D. Kay, D. E. Elrick Soil Sci. 1967 314 322

[4] M. Bromly, C. Hinz Water Resour. Res. 2004 W07402

[5] R. Leprovost, G. Lods, T. Poidras, P. Pezard Water Resour. Res. 2008 W06426

[6] M. T. Van Genuchten, P. J. Wierenga Soil. Sci. Soc. Am. J. 1976 473 480

[7] F. T. Lindstrom, R. Haque, V. H. Freed, L. Boersma Environ. Sci. Technol. 1967 561 565

[8] H. A. Deans Soc. Pet. Eng. J. 1963 49 52

[9] D. E. Nielsen, J.W. Biggar Soil Sci. Soc. Am. Proc. 1961 1 5

[10] R. Schumer, D. A. Benson, M. M. Meerschaert, B. Baeumer Water Resour. Res. 2003 1296

[11] R.D. Harter, D.E. Baker Soil Sci. Soc. Am. J. 1977 1077 1080

[12] H. M. Selim, M. C. Amacher. Reactivity and Transport of Heavy Metals in Soils. CRC/lewis, Boca Raton, Florida, 1997.

[13] S. Falconer, A. Al-Sabbagh, S. Fedotov Math. Model. Nat. Phenom. Vol. 2015 48 60

[14] R. Metzler, J. Klafter Phys. Rep. 2000 1 77

[15] R.J. Beerends. Fourier and Laplace Transforms. Cambridge University Press, Cambrige, 2003.

[16] M. W. Becker, A. M. Shapiro Water Resour. Res. 2000 1677 1686

[17] R. Gorenflo, F. Mainardi CISM lecture notes 1997 223 274

[18] Z. Gerstl, Y. Chen, U. Mingelgrin, B. Yaron. Toxic Organic Chemicals in Porous Media. Ecological Studies Ser., Springer, Berlin, 1989.

[19] D.G. Duff, G. David, S. M. C. Ross, D. H. Vaughan J. Chem. Ed. 1988 815

[20] B. Maryshev, A. Cartalade, C. Latrille, M. Joelson, M.-Ch. Neel Comput. Math. Appl. 2013 630 638

[21] B. Maryshev, A. Cartalade, C. Latrille, M.-Ch. Neel. Adjoint state method for fractional mobile-immobile model, Proceedings (CD) of the 4th International Conference on Porous Media and its Applications in Science and Engineering, ICPM4, AIP, Potsdam, Germany, 2012.

Cité par Sources :