Subdiffusion–Absorption Process in a System with a Thin Membrane
Mathematical modelling of natural phenomena, Tome 11 (2016) no. 3, pp. 128-141.

Voir la notice de l'article provenant de la source EDP Sciences

We study a subdiffusion–absorption process which takes place in a system with a thin membrane. We present the method of deriving the Green’s functions (probability densities) describing the process. Within this method we consider a particle’s random walk in a system with both a discrete time and space variable. Then, we move from a discrete system to a continuous system by means of the procedures which are presented in this paper.
DOI : 10.1051/mmnp/201611308

T. Kosztołowicz 1 ; K. D. Lewandowska 2

1 Institute of Physics, Jan Kochanowski University, ul. Świȩtokrzyska 15, 25-406 Kielce, Poland
2 Department of Radiological Informatics and Statistics, Medical University of Gdańsk, ul. Tuwima 15, 80-210 Gdańsk, Poland
@article{MMNP_2016_11_3_a7,
     author = {T. Koszto{\l}owicz and K. D. Lewandowska},
     title = {Subdiffusion{\textendash}Absorption {Process} in a {System} with a {Thin} {Membrane}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {128--141},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2016},
     doi = {10.1051/mmnp/201611308},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611308/}
}
TY  - JOUR
AU  - T. Kosztołowicz
AU  - K. D. Lewandowska
TI  - Subdiffusion–Absorption Process in a System with a Thin Membrane
JO  - Mathematical modelling of natural phenomena
PY  - 2016
SP  - 128
EP  - 141
VL  - 11
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611308/
DO  - 10.1051/mmnp/201611308
LA  - en
ID  - MMNP_2016_11_3_a7
ER  - 
%0 Journal Article
%A T. Kosztołowicz
%A K. D. Lewandowska
%T Subdiffusion–Absorption Process in a System with a Thin Membrane
%J Mathematical modelling of natural phenomena
%D 2016
%P 128-141
%V 11
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611308/
%R 10.1051/mmnp/201611308
%G en
%F MMNP_2016_11_3_a7
T. Kosztołowicz; K. D. Lewandowska. Subdiffusion–Absorption Process in a System with a Thin Membrane. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 3, pp. 128-141. doi : 10.1051/mmnp/201611308. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611308/

[1] R. Metzler, J. Klafter Phys. Rep. 2000 1 77

[2] R. Metzler, J. Klafter J. Phys. A 2004 R161

[3] T. Kosztołowicz, K. Dworecki, S. Mrówczyński Phys. Rev. Lett. 2005 170602

[4] T. Kosztołowicz, K. Dworecki, S. Mrówczyński Phys. Rev. E 2005 041105

[5] D. ben–Avraham, S. Havlin. Diffusion and Reactions in Fractals and Disordered Systems. Cambridge University Press, Cambridge, 2000.

[6] S.B. Yuste, K. Lindenberg, J.J. Ruiz–Lorenzo. Subdiffusion limited reactions. in: Anomalous Transport: Foundations and Applications, R. Klages, G. Radons, and I. M. Sokolov (Eds.) Wiley-VCH, Weinheim, 2007.

[7] K. Seki, M. Wojcik, M. Tachiya J. Chem. Phys. 2003 7525

[8] S.B. Yuste, L. Acedo, K. Lindenberg Phys. Rev. E 2004 036126

[9] E. Barkai, R. Metzler, J. Klafter Phys. Rev. E 2000 132 138

[10] M. Magdziarz, A. Weron, J. Klafter Phys. Rev. Lett. 2008 210601

[11] I.M. Sokolov, M.G.W. Schmidt, F. Sagués Phys. Rev. E 2006 031102

[12] J. Sung, E. Barkai, R.J. Silbey, S. Lee J. Chem. Phys. 2002 2338 2341

[13] V. Méndez, S. Fedotov, W. Horsthemke. Reaction-Transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities. Springer–Verlag, Berlin, 2010.

[14] T. Kosztołowicz, K.D. Lewandowska Phys. Rev. E 2014 032136

[15] T. Kosztołowicz Phys. Rev. E 2015 042151

[16] T. Kosztołowicz Phys. Rev. E 2015 022102

[17] T. Kosztołowicz J. Stat. Mech: Theor. Exp. 2015

[18] T. Kosztołowicz. Subdiffusion in a system consisting of two different media separated by a thin membrane. Arxiv: cond-mat., 1511.09096 (2015).

[19] E.W. Montroll, G.H. Weiss J. Math. Phys. 1965 167

[20] T. Kosztołowicz J. Phys. A: Math. Gen. 2004 10779

[21] J. Klafter, I.M. Sokolov. First steps in random walks. From tools to applications. Oxford UP, New York, 2011.

[22] A.C. Giese. Cell Physiology. W.B. Saunders Co., Philadelphia, 1973.

Cité par Sources :