Reaction Spreading in Systems With Anomalous Diffusion
Mathematical modelling of natural phenomena, Tome 11 (2016) no. 3, pp. 107-127.

Voir la notice de l'article provenant de la source EDP Sciences

We briefly review some aspects of the anomalous diffusion, and its relevance in reactive systems. In particular we consider strong anomalous diffusion characterized by the moment behaviour 〈x(t)q〉 ∼ tqν(q), where ν(q) is a non constant function, and we discuss its consequences. Even in the apparently simple case ν(2) = 1 / 2, strong anomalous diffusion may correspond to non trivial features, such as non Gaussian probability distribution and peculiar scaling of large order moments. When a reactive term is added to a normal diffusion process, one has a propagating front with a constant velocity. The presence of anomalous diffusion by itself does not guarantee a changing in the front propagation scenario; a key factor to select linear in time or faster front propagation has been identified in the shape of the probability distribution tail in absence of reaction. In addition, we discuss the reaction spreading on graphs, underlying the major role of the connectivity properties of these structures, characterized by the connectivity dimension.
DOI : 10.1051/mmnp/201611307

F. Cecconi 1 ; D. Vergni 2 ; A. Vulpiani 3

1 CNR - Istituto dei Sistemi Complessi, Via dei Taurini 19, I-00185 Rome, Italy
2 CNR - Istituto Applicazioni del Calcolo Via dei Taurini 19, I-00185 Rome, Italy
3 Università di Roma “Sapienza”, Piazzale A. Moro 5, I-00185 Rome, Italy.
@article{MMNP_2016_11_3_a6,
     author = {F. Cecconi and D. Vergni and A. Vulpiani},
     title = {Reaction {Spreading} in {Systems} {With} {Anomalous} {Diffusion}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {107--127},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2016},
     doi = {10.1051/mmnp/201611307},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611307/}
}
TY  - JOUR
AU  - F. Cecconi
AU  - D. Vergni
AU  - A. Vulpiani
TI  - Reaction Spreading in Systems With Anomalous Diffusion
JO  - Mathematical modelling of natural phenomena
PY  - 2016
SP  - 107
EP  - 127
VL  - 11
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611307/
DO  - 10.1051/mmnp/201611307
LA  - en
ID  - MMNP_2016_11_3_a6
ER  - 
%0 Journal Article
%A F. Cecconi
%A D. Vergni
%A A. Vulpiani
%T Reaction Spreading in Systems With Anomalous Diffusion
%J Mathematical modelling of natural phenomena
%D 2016
%P 107-127
%V 11
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611307/
%R 10.1051/mmnp/201611307
%G en
%F MMNP_2016_11_3_a6
F. Cecconi; D. Vergni; A. Vulpiani. Reaction Spreading in Systems With Anomalous Diffusion. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 3, pp. 107-127. doi : 10.1051/mmnp/201611307. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611307/

[1] M. Abel, A. Celani, D. Vergni, A. Vulpiani Phys. Rev. E 2001 046307

[2] E. Agliari Phys. Rev. E 2008 011128

[3] S. Alexander, R. Orbach J. Phys. Lett. 1982 625 631

[4] K. Andersen, P. Castiglione, A. Mazzino, A. Vulpiani Eur. Phys. J., B 2000 447 452

[5] M. Avellaneda, A.J. Majda Commun. Math. Phys. 1991 339 391

[6] M. Avellaneda, M. Vergassola Phys. Rev. E 1995 3249 3251

[7] D. Bertacchi Electron. J. Probab 2006 1184 1203

[8] G. Boffetta, A. Celani, A. Crisanti, A. Vulpiani Phys. Rev. E 1999 6734 6741

[9] G. Boffetta, I. M. Sokolov Phys. Fluids 2002 3224 3232

[10] B. Bollobás. Modern Graph theory. Springer-Verlag, New York, 1998.

[11] J.P. Bouchaud, A. Georges Phys. Rep. 1990 127 293

[12] R. Burioni, D. Cassi Phys. Rev. E 1994 R1785 R1787

[13] R. Burioni, D. Cassi Phys. Rev. E 1995 2865 2869

[14] R. Burioni, S. Chibbaro, D. Vergni, A. Vulpiani Phys. Rev. E 2012 055101 055104

[15] D. Cassi, R. Sofia Mod. Phys. Lett., B 1992 1397 1403

[16] P. Castiglione, A. Mazzino, P. Muratore-Ginanneschi, A. Vulpiani Physica D 1999 75 93

[17] J.W. Chamberlain, D.M. Hunten. Theory of Planetary Atmospheres: An Introduction to Their Physics and Chemistry. Academic Press, New York 1987.

[18] W.J. Cocke Phys. Fluids 1969 2488 2492

[19] M.E. Fisher J. Chem. Phys. 1966 616 622

[20] R.A. Fisher Ann. Hum. Genet. 1937 355 369

[21] G. Forte, R. Burioni, F. Cecconi, A. Vulpiani J. Phys.: Condens. Matter 2013 465106

[22] G. Forte, F. Cecconi, A. Vulpiani Eur. Phys. J. B 2014 102 111

[23] M. Freidlin. Functional integration and partial differential equations. Princeton University Press, Princeton NJ, 1985.

[24] U. Frisch. Turbulence. The legacy of A.N. Kolmogorov. Cambridge University Press, Cambridge (UK) 1995.

[25] A. Gabrielli, F. Cecconi. Diffusion, super-diffusion and coalescence from single step. J. Stat. Mech. (2007), P10007.

[26] B. Gnedenko and A.N. Kolmogorov. Limit distribution for Sums of Independent Random Variables. Addison-Wesley, 1954.

[27] R. Ishizaki, T. Horita, T. Kobayashi, H. Mori Prog. Theor. Phys. 1991 1013 1022

[28] J. Klafter and I.M. Sokolov. First steps in random walks: from tools to applications. Oxford University Press, New York, 2011.

[29] R. Klages. G. Radons. I.M. Sokolov. Anomalous transport: foundations and applications. Wiley-VCH Verlag GmbH Co. Weinheim (DE) (2008).

[30] X.P. Kong, E.G.D. Cohen Phys. Rev. B 1989 4838 4845

[31] J. Klafter, M. F. Shlesinger, G. Zumofen Physics Today 1996 33 39

[32] A.N. Kolmogorov, I.G. Petrovskii, N.S. Piskunov Bull. Moscow Univ. Math., A 1937 1 25

[33] A.J. Lichtenberg, M.A. Lieberman. Regular and Chaotic Dynamics. Springer-Verlag, New York, 1991.

[34] A.J. Majda, P.R. Kramer Phys. Rep. 1999 237 574

[35] R. Mancinelli, D. Vergni, A. Vulpiani Eur. Phys. Lett. 2002 532 538

[36] R. Mancinelli, D. Vergni, A. Vulpiani Physica D 2003 175 195

[37] B. Mandelbrot. The Fractal Geometry of Nature. Freeman, San Francisco, 1983.

[38] T. Manos, M. Robnik Phys. Rev. E 2014 022905

[39] R.N. Mantegna, H.E. Stanley Phys. Rev. Lett. 1994 2946 2949

[40] G. Matheron, G. De Marsily Water Resources Res. 1980 901 917

[41] V. Méndez, A. Iomin, D. Campos, W. Horsthemke Mesoscopic description of random walks on combs Phys. Rev. E 2015 062112

[42] J.D. Murray. Mathematical Biology, Springer, Berlin 1993.

[43] Z. Neufeld and E. Hernández-García. Chemical and Biological Processes in Fluid Flows: A Dynamical Systems Approach. World Scientific, Singapore 2009.

[44] I. Procaccia Phys. Rev. A 1985 3073 3083

[45] A. Okubo, S.A. Levin. Diffusion and Ecological Problems: Modern Perspectives, Science Business Media vol. 14, Springer, Berlin 2013.

[46] H.R. Pruppacher, J.D. Klett. Microphysics of clouds and precipitation. Kluwer Academic Plubisher, Boston 1998.

[47] A.B. Rechester, R.B. White Phys. Rev. Lett. 1980 1586 1589

[48] L.F. Richardson Proc. R. Soc. Lond., A 1926 709 737

[49] D.E. Rosner. Transport processes in chemically reacting flow systems. Butterworth-Heinemann, Boston 2013.

[50] M.F. Schlesinger, B. West, J. Klafter Phys. Rev. Lett. 1987 1100 1104

[51] N.G. Van Kampen. Stochastic processes in physics and chemistry. Elsevier, 1992.

[52] V.A. Volpert, Y. Nec, A.A. Nepomnyashchy Physica D 2010 134 144

[53] J.B. Weiss, A. Provenzale, eds. Transport and mixing in geophysical flows. vol. 744. Springer, Berlin 2007.

[54] G.M. Zaslavsky, D. Stevens, A. Weitzener Phys. Rev. E 1993 1683 1694

Cité par Sources :