Lévy Transport in Slab Geometry of Inhomogeneous Media
Mathematical modelling of natural phenomena, Tome 11 (2016) no. 3, pp. 51-62.

Voir la notice de l'article provenant de la source EDP Sciences

We present a physical example, where a fractional (both in space and time) Schrödinger equation appears only as a formal effective description of diffusive wave transport in complex inhomogeneous media. This description is a result of the parabolic equation approximation that corresponds to the paraxial small angle approximation of the fractional Helmholtz equation. The obtained effective quantum dynamics is fractional in both space and time. As an example, Lévy flights in an infinite potential well are considered numerically. An analytical expression for the effective wave function of the quantum dynamics is obtained as well.
DOI : 10.1051/mmnp/201611304

A. Iomin 1 ; T. Sandev 2, 3

1 Department of Physics, Technion, Haifa 32000, Israel
2 Max Planck Institute for the Physics of Complex Systems Nöthnitzer Strasse 38, 01187 Dresden, Germany
3 Radiation Safety Directorate, Partizanski odredi 143, P.O. Box 22, 1020 Skopje, Macedonia
@article{MMNP_2016_11_3_a3,
     author = {A. Iomin and T. Sandev},
     title = {L\'evy {Transport} in {Slab} {Geometry} of {Inhomogeneous} {Media}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {51--62},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2016},
     doi = {10.1051/mmnp/201611304},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611304/}
}
TY  - JOUR
AU  - A. Iomin
AU  - T. Sandev
TI  - Lévy Transport in Slab Geometry of Inhomogeneous Media
JO  - Mathematical modelling of natural phenomena
PY  - 2016
SP  - 51
EP  - 62
VL  - 11
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611304/
DO  - 10.1051/mmnp/201611304
LA  - en
ID  - MMNP_2016_11_3_a3
ER  - 
%0 Journal Article
%A A. Iomin
%A T. Sandev
%T Lévy Transport in Slab Geometry of Inhomogeneous Media
%J Mathematical modelling of natural phenomena
%D 2016
%P 51-62
%V 11
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611304/
%R 10.1051/mmnp/201611304
%G en
%F MMNP_2016_11_3_a3
A. Iomin; T. Sandev. Lévy Transport in Slab Geometry of Inhomogeneous Media. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 3, pp. 51-62. doi : 10.1051/mmnp/201611304. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611304/

[1] D. Kusnezov, A. Bulgac, G.D. Dang Phys. Rev. Lett. 1136 1999

[2] N. Laskin Chaos 780 2000

[3] B.J. West J. Phys. Chem. B 3830 2000

[4] B.J. West, M. Bologna, P. Grigolini, Physics of Fractal Operators. Springer, New York, 2002.

[5] J.-P. Bouchaud, A. Georges Models and Physical Applications, Phys. Rep. 127 1990

[6] R. Metzler, J. Klafter Phys. Rep. 1 2000

[7] R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals. McGraw–Hill, New York, 1965.

[8] M. Naber J. Math. Phys. 3339 2004

[9] M.H. Stone Ann. Math. 643 1932

[10] M. Kac, Probability and Related Topics in Physical Sciences. Interscience, NY, 1959.

[11]

[12] M. Chaichian, A. Demichev, Path Integrals in Physics: Stochastic Process and Quantum Mechanics, Vol. 1 IOP Publishing, Bristol, 2001.

[13] A. Iomin Phys. Rev. E 022103 2009

[14] A. Iomin, Fractional-time Schrödinger equation: Fractional dynamics on a comb, Chaos, Solitons Fractals 44: 348, 2011.

[15] J.-N. Wu, C.-H. Huang, S.-C. Cheng, W.-F. Hsieh Phys. Rev. A 023827 2010

[16] M.A. Leontovich, On a method of solving the problem of propagation of electromagnetic waves along the earth’s surface, Proceedings of the Academy of Sciences of USSR, physics 8, 16 (1944) (in Russian).

[17] R.V. Khokhlov Radiotekh. Elrctron. 1116 1961

[18] E.D. Tappert, The Parabolic Approximation Method, Lectures Notes in Physics, 70, in: Wave Propagation and Underwater Acoustics, eds. by J. B. Keller and J.S. Papadakis, Springer, New York, 224-287, 1977

[19] L. Levi, Y. Krivolapov, S. Fishman, M. Segev Nature Phys. 912 2012

[20] Y. Krivolapov, L. Levi, S. Fishman, M. Segev, M. Wilkinson New J. Phys. 043047 2012

[21] L. Levi, M. Rechtsman, B. Freedman, T. Schwartz, O. Manela, M. Segev Science 1541 2011

[22] M. Rechtsman, L. Levi, B. Freedman, T. Schwartz, O. Manela, M. Segev Opt. Photon. News (Special Issue) 33 2011

[23] B.J. West, P. Grigolini, R. Metzler, T.F. Nonnenmacher Phys. Rev. E 99 1997

[24] F. Mainardi Forum der Berliner Mathematischer Gesellschaft 20 2011

[25] B. Atamaniuk, A.J. Turski AIP Conf. Proc. 347 2008

[26] P. Barthelemy, J. Bertolotti, D.S. Wiersma Nature 495 2008

[27] F. Mainardi Chaos, Solitons & Fractals 1461 1996

[28] M.M. Meerschaert, R.J. Mcgough J. Vibration and Acoustics 051004 2014

[29] J.M. Carcione, F. Cavallini, F. Mainardi, A. Hanyga Pure Appl. Geophys. 1719 2002

[30] G. Casasanta, R. Garra Signal Image Video Processing 389 2012

[31] I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999).

[32] K.B. Oldham, J. Spanier, The Fractional Calculus Academic Press, Orlando, 1974.

[33] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York, 1993.

[34]

[35] Y. Sagi, M. Brook, I. Almog, N. Davidson Phys. Rev. Lett. 093002 2012

[36] S. Marksteiner, K. Ellinger, P. Zoller Phys. Rev. A 3409 1996

[37] D.A. Kessler, E. Barkai Phys. Rev. Lett. 230602 2012

[38] A. Dechant, E. Lutz, D.A. Kessler, E. Barkai Phys. Rev. Lett. 240603 2011

[39] R.K. Saxena, Z. Tomovski, T. Sandev Eur. J. Pure Appl. Math. 312 2014

[40] S.L. Kalla App. Math. Comp. 1412 2010

[41] A. Iomin Chaos, Solitons & Fractals 73 2015

Cité par Sources :